Answers to assigned even-numbered problems in Chapter 5

Section 5.1

6 a) $\frac{1}{3}$, b) $2^{-\frac{9}{4}}$

14 a) x, b) x

20 x = 4.

28 (It is a problem to give a plot.)

Section 5.2

34 (It is a problem to give a plot.)

Section 5.3

4
$$A = 150000 \left(1 + \frac{0.09}{365}\right)^{365 \times 3} = 196488.12.$$

 ${\bf 6}\,$ The effective rates are a) 8.3000% and b) 8.3278%

10 $A = 25000 (1 + 0.07)^6 = 37518.259$ and the interest earned = 12518.259

32
$$P = 22289.22 \left(1 + \frac{0.08}{4}\right)^{-20} = 15000.$$

Section 5.4

8
$$(u^2 e^{-u})' = u(2-u)e^{-u}.$$

32 $(t^2 e^{-2t})' = 2t(1-t)e^{-2t}, (t^2 e^{-2t})'' = 2(1-4t+2t^2)e^{-2t},$

Section 5.5

2
$$(\ln 5x)' = \frac{1}{x}$$
.
8 $(\ln(\sqrt{x}+1))' = \frac{1}{2(x+\sqrt{x})}$.

28
$$\left(e^x \ln \sqrt{x+3}\right)' = \frac{1}{2}e^x \left(\ln(x+3) + \frac{1}{x+3}\right).$$

Section 5.6

- **2** a) The dacay constant is 0.06; b) The initial quantity is 2000; c) (This part asks for giving some values of Q(t)).
- 4 a) (This part asks for giving some values of Q(t)). b) The estimate rate of growth in 2010 is $5.3 (e^{0.02t})'\Big|_{t=20} = 0.158133$.
- 12 $0.18Q_0 = Q_0 e^{-0.00012t^*}, t^* = 14289.99$, i.e., the approximate age of the bones is 14290 years.