MATH 2164 Test 2

August 1998

Name : _____

1. Suppose
$$A = \begin{bmatrix} -1 & 2 \\ 4 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 1 \\ 2 & 3 \end{bmatrix}$. Find 2AB and 2BA.

2. Use Cramer's rule to compute the solution of the system

$$\begin{cases} 2x_1 + 4x_2 = 6, \\ 3x_1 + 5x_2 = 7. \end{cases}$$

3. (a.) Combine the methods of row reduction and cofactor expansion to compute the determinant :

-1	2	3	0	
3	4	3	0	
8	4	6	6	
4	2	4	3	

(b.) Suppose that A and B are 2×2 matrices, det A = 5 and det B = 3, Find out det A^T , det AB, det BA and det 2A.

4. Determine which of the following matrices are invertible by using the row reduction method :

г	1	0	<u>ე</u> -	1	[1]	0	2	0 -	
	1		о О		0	3	0	4	
	1	4	9	,	5	6	7	8	•
L	1	8	27	J	4	3	5	4	

5. Compute the adjugate of the given matrix and use this result to give the inverse of the matrix

$$A = \left[\begin{array}{rrr} 3 & 5 & 4 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{array} \right].$$

6. Find bases for Nul $A,\,{\rm Col}\;A$ and Row $A,\,{\rm where}$

$$A = \begin{bmatrix} 1 & 1 & 4 & 1 & 5 \\ 0 & 1 & 2 & 2 & 6 \\ 3 & 1 & 8 & -1 & 3 \\ 1 & 1 & 4 & 4 & 8 \end{bmatrix}.$$

7. Let
$$\vec{v}_1 = \begin{bmatrix} 2\\6\\2 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$, $\vec{x} = \begin{bmatrix} 5\\18\\7 \end{bmatrix}$ and $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$.

(a.) Is the set \mathcal{B} a basis for $Span\{\vec{v}_1, \vec{v}_2\}$?

(b.) Determine if \vec{x} is in $Span \{\vec{v}_1, \vec{v}_2\}$, and if it is, find the coordinate vector of \vec{x} relative to \mathcal{B} .

8. (a.) Let A be a 7×4 matrix. Suppose rank A = 3, find dim Nul A, dim Col A, dim Row A and rank A^{T} .

(b.) Let A be a 4×7 matrix. Suppose dim Nul A = 3, find rank A, dim Col A, dim Row A and rank A^{T} .

(c.) If A is a 7×5 matrix, what is the largest possible rank of A? If A is a 5×7 matrix, what is the largest possible rank of A? Explain your answers.

(d.) Suppose A is a 6×8 matrix, what is the smallest possible dimension of Nul A? Explain your answer.

- 9. Decide whether the following statements are true or false. Give a reason for each answer.
 - (a.) It is possible for a 5×5 matrix A to be invertible when its columns do not span \mathcal{R}^5 .

(b.) If A is invertible, then the columns of A^{-1} are linearly independent.

(c.) If A and B are $m \times n$ matrices, then both AB^T and BA^T are defined.

(d.) If A and B are $n \times n$ matrices, then $(A+B)(A-B) = A^2 - B^2$.

(e.) Row operations on a matrix A can change the linear dependence relations among the rows of A.

(f.) Row operations on a matrix A can change the linear dependence relations among the columns of A.

(g.) If there exists a linearly dependent set $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in V, then dim $V \leq p$.

(h.) If there exists a linearly independent set $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in V, then dim $V \ge p$.