
Supplement Exercises to MATH 5176

Section 1.2

1’ Prove Theorem 2.2 in the reference materials [4].

Section 1.3

1’ Find the truncation error of

vn+1
m − vn

m

k
+ a

[

α
3vn+1

m − 4vn+1
m−1 + vn+1

m−2

2h

+ (1 − α)
3vn

m − 4vn
m−1 + vn

m−2

2h

]

= 0, α ∈ [0, 1],

which is approximate to
∂u

∂t
+ a

∂u

∂x
= 0.
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Section 2.1

1′ For a periodic funciton f (x) which is piecewise continuious on [−L,L]
and has a left-hand derivative and right-hand derivative at each point of
the interval [−L,L], we have its Fourier series

f (x) = a0 +
∞
∑

m=1

(

am cos
mπx

L
+ bm sin

mπ

L
x
)

,

where

a0 =
1

2L

∫ L

−L
f (x) dx,

am =
1

L

∫ L

−L
f (x) cos

mπx

L
dx,

bm =
1

L

∫ L

−L
f (x) sin

mπx

L
dx,

m = 1, 2, · · · .

Suppose that a function is defined on a grid: x = mh, m = 0,±1,±2, · · · ,
and suppose the value of the funciton on x = mh is vm.

Based on the result on Fourier series, show that vm can be expressed as

vm =
1√
2π

∫ π/h

−π/h
eimhξv̂ (ξ) dξ,

where

v̂ (ξ) =
1√
2π

∞
∑

m=−∞

e−imhξvmh.

2’ Show the Parseval relation ‖v̂‖2
h = ‖v‖2

h

Section 2.2

1’ Show that for any l, the following holds:

cos lθ =
l
∑

j=0

el,j sin2j θ

2

sin lθ = sin
θ

2
cos

θ

2

l−1
∑

j=0

ēl,j sin2j θ

2
,

where el,j and ēl,j are constants.

2’ Necessary and sufficient conditions for

f0 + f1 sin2 θ

2
+ f2 sin4 θ

2
≥ 0

are

f0 ≥ 0, 2f0 + f1 + 2 [f0 (f0 + f1 + f2)]
1

2 ≥ 0, f0 + f1 + f2 ≥ 0.
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3’ If
∑

l

(−1)H3(l) d∗

l (θ) dl (θ) ≡ 0,

then the matrix
Q =

∑

l

(−1)H3(l) D∗

l Dl

is a ”pseudo-null” matrix. Here H3 (l) is equal to either 0 or 1.

4’ If d∗

1 (θ) d1 (θ) − d∗

2 (θ) d2 (θ) ≥ 0, then the matrix D∗

1D2 − D∗

2D2 can be
represented by a sum of one nonnegative definite matrix Z and pseudo-
null matrix Q.

5’ Consider

vn+1
m − vn

m

k
+

a

2

[

3vn+1
m − 4vn+1

m−1 + vn+1
m−2

2h
+

3vn
m − 4vn

m−1 + vn
m−2

2h

]

= 0.

In order for the Von Neumann condition to hold, what condition does
ak

h
should satisfy?

6’ Consider

vn+1
m − vn

m

k
+ a

[

α
vn+1

m+1 − vn+1
m−1

2h
+ (1 − α)

vn
m+1 − vn

m−1

2h

]

= 0.

In order for the Von Neumann condition to hold, for any α ∈
[

0, 1
2

]

, what

condition does
ak

h
should satisfy? For any α ∈

[

1
2
, 1
]

, what condition

does
ak

h
should satisfy?

7’ Consider the inverse Lax-Friedichr scheme

1
2

(

vn+1
m+1 + vn+1

m−1

)

− vn
m

k
+ a

vn+1
m+1 − vn+1

m−1

2h
= 0.

In order for the Von Neumann condition to hold, what condition does
ak

h
should satisfy?

8’ Using the Von Neumann analysis to show the stability condition of the
scheme

vn+1
m − vn

m

k
+

a

2

(

vn+1
m+1 − vn+1

m

h
+

vn
m − vn

m−1

h

)

= 0

and show that the truncation error is O (k2) + O (h2) .
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8” Using the Von Neumann analysis to find the stability condition of the
scheme

vn+1
m − vn

m

k
+

a

2

(

vn+1
m+1 − vn+1

m

h
+

vn
m − vn

m−1

h

)

= 0.

9’ If the following holds:

T n ≤ (1 + c̄0h) T n+1, n = 0, 1, 2, · · ·

and
1

c̄1

‖vn‖2
h ≤ T n ≤ c̄1 ‖vn‖2

h , n = 0, 1, · · · ,

then we can prove that the scheme is stable.

10’ Using the Theorem 1 in the reference material [3], prove that a horizontal
3-point scheme

rn
−1mvn+1

m−1 + rn
0mvn+1

m + rn
1,mvn+1

m+1

= sn
−1mvn

m−1 + sn
0,mvn

m + sn
1,mvn

m+1

is stable, if the conditions (i)-(iv) in Theorem 1 hold.

11’ Show that a1 sin2 θ
2

+ a2 sin4 θ
2

+ a3 sin6 θ
2

can be written as

∑

l

d∗

l (θ) mldl (θ)

and ml will be positive numbers if

a1 ≥ 0, a1 + a2 + a3 ≥ 0, 2a1 + a1 + 2 [a1 (a1 + a2 + a3)]
1

2 ≥ 0.

12’ Show that a horizontal four-point explicit scheme with variable coeffi-
cients

vn+1
m = s−1mvn

m−1 + s0mvn
m + s1mvn

m+1 + s2mvn
m+2, (sim = si (xm))

is stable if the Von Neumann condition is satisfied at all the points

and
∂si (x)

∂x
and

∂2si (x)

∂x2
are continuous functions and bounded, i =

−1, 0, 1, 2.

13’ Show
(

1 + 1
x

)ax ≤ ea for any x > 0 if a > 0. (Hint: 1. show that
(

1 + 1
x

)ax
in an increasing function on (0,∞) if a > 0. 2. If f (a) >

f (b) > 0 and df
dx

< 0 on [a, b], then f (x) > 0 on [a, b] .)

4



14’ Show that when Von Neumann alaysis is used, replacing vn+k
m+k by gn+kei(m+j)θ

and vn+k
m+k by gkeijθ will generate the same g.

15’ Consider the scheme

vn+1

m+1
+vn+1

m

2
− vn

m+1
+vn

m

2

k
+ a

vn+1
m+1 − vn+1

m + vn
m+1 + vn

m

2h
= 0

and define λ = k
h
. Find out the condition aλ should satisfy in order for

the scheme to be stable by using Von Neumann analysis.

16’ Show that f (x) = 1 + x − 4a2λ2x3 ≥ 0 on [0, 1] is true if and only if
a2λ2 ≤ 1

2
.

17’ Find out when the scheme

αvn+1
m+1 + (1 − α) vn+1

m−1 = vn
m

is stable, and when it is unstable by using Von Neumann analysis.

18’ Find the stability condition for each of the following scheme

(a)
vn+1

m − vn
m

k
+ a

vn
m+1 − vn

m

h
= 0;

(b)
vn+1

m − vn
m

k
+ a

vn
m − vn

m−1

h
= 0;

(c)
vn+1

m − vn
m

k
+ a

vn
m+1 − vn

m−1

2h
= 0;

(d)
vn+1

m − 1
2

(

vn
m+1 + vn

m−1

)

k
+ a

vn
m+1 − vn

m−1

2h
= 0;

(e)






ṽn+1
m − vn

m

k
+

vn
m+1 − vn

m−1

2h
= 0,

vn+1
m = 1

4

(

ṽn+1
m+1 + 2ṽn+1

m + ṽn+1
m−1

)

.
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Section 3.1

0’ (a) Show

∂u (t, x)

∂x
=

3u (t, x) − 4u (t, x − h) + u (t, x − 2h)

2h
+ 0

(

h2
)

,

∂2u (t, x)

∂x2
=

u (t, x) − 2u (t, x − h) + u (t, x − 2h)

h2
+ 0 (h) .

(b) Show that for ∂u
∂t

+ a∂u
∂x

= 0

vn+1
m = vn

m−aλ

2

(

3vn
m − 4vn

m−1 + vn
m−2

)

+
α2λ2

2

(

vn
m − 2vn

m−1 + vn
m−2

)

is a second order scheme.

0” Find the truncation error of

vn+1
m − vn

m

k
+ a

[

α
3vn+1

m − 4vn+1
m−1 + vn+1

m−2

2h

+ (1 − α)
3vn

m − 4vn
m−1 + vn

m−2

2h

]

= 0, α ∈ [0, 1],

which is approximate to
∂u

∂t
+ a

∂u

∂x
= 0. (Hint: Use Taylor series at

t = tn+1/2 and x = xm.)

1’ a Consider
∂u

∂t
+ a (x, t)

∂u

∂x
= f (x, t) . For this case, the MacCormack

scheme given on page 77 can be rewritten as

vn+1
m = vn

m − an
mλ

2

(

vn
m+1 − vn

m−1

)

+
an2

m λ2

2

(

vn
m+1 − 2vn

m + vn
m−1

)

+
k

2

(

fn+1
m + fn

m

)

− an
mkλ

2

(

fn
m − fn

m−1

)

.

If a(x, t) = constant, it is a second order scheme. What is the
truncation error of the scheme if a(x, t) depends on x, t. If its
truncation error is not O (k2) + O (h2), derive a similar scheme
whose truncation error is O (k2) + O (h2) .

b Replacing a (x, t) by a (u), study the problem mentioned in (a).

2’ Show

un+1
m − un

m−1

k
=

∂u
n+ 1

2

m−
1

2

∂t
+

h

k

∂u
n+ 1

2

m−
1

2

∂x
+ O

(

k2
)

if h = ck.

(Hint: Use Taylor series at t = tn+1/2 and x = xm−1/2.)
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2” Consider ∂u
∂t

+ a∂u
∂x

= 0 with a > 0. For this case we have the following
scheme

v
n+ 1

2
m = vn

m − aλ

2

(

vn
m − vn

m−1

)

vn+1
m = vn

m−1 − (aλ − 1)
(

v
n+ 1

2
m − v

n+ 1

2

m−1

)

.

Find its truncaiton error and the stability condition.

3’ Show that the two-step scheme

ṽ
n+ 1

2
m = vn

m − an
mλ

2

(

vn
m+1 − vn

m

)

+
k

2
fn

m

vn+1
m = vn

m−1 −
(

a
n+ 1

2

m−
1

2

λ − 1
)(

ṽ
n+ 1

2
m − ṽ

n+ 1

2

m−1

)

+ kf
n+ 1

2

m−
1

2

is a second-order scheme approximating to

∂u

∂t
+ a (x, t)

∂u

∂x
= f (x, t)

and

∂u

∂t
+ a (u)

∂u

∂x
= f (x, t) (In this case an

m means a (un
m) ) .

3” Consider the scheme

vn+1
m − vn

m

k
+

a

2

(

vn+1
m+1 − vn+1

m

h
+

vn
m − vn

m−1

h

)

= 0.

Show that its truncation error is O (k2) + O (h2) .

4’ Prove Theorem 3.1.4 on page 71.

Section 3.2

1’ (a) Modifying the MacCormack scheme given in the book (page 77), so
that it is a second order scheme approximating to

∂u

∂t
+ a (x, t)

∂u

∂x
= f (x, t) .

(b) Modifying the MacCormack scheme given in the book (page 77), so
that it is a second order scheme approximating to

∂u

∂t
+ a (u)

∂u

∂x
= f (x, t) .
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2’ For each case given in Appendix A, determine whether or not the com-
putation is stable and the order of the scheme by using the last two
results if it is stable, and explain how the theoretical results support
your conclusion.

3’ For each of the two cases given in Appendix B, determine whether or
not the computation is stable and whether or not the result is correct,
and explain how the theoretical results support your conclusion.

4’ Show that the Lax–Wendroff scheme is stable if and only if |aλ| ≤ 1.

5’ Show that the Crank-Nicolson scheme is unconditionally stable.

Section 3.4

1’ Derive the explicit one-sided second order scheme using a two-step method
by which we derive the L-W scheme and analyze its stability condition.

2’ Derive an implicit one-sided second order scheme to
∂u

∂t
+ a

∂u

∂x
= 0 in

the form

vn+1
m − vn

m

k
+

a

2h

[

b0v
n+1
m + b1v

n+1
m+1 + b2v

n+1
m+2 + b0v

n
m + b1v

n
m+1 + b2v

n
m+2

]

= 0,

show that such a scheme is unique and analyze its stability condition.

3’ Derive an explicit one-sided second order scheme to
∂u

∂t
+ a

∂u

∂x
= 0 in

the form

vn+1
m − vn

m

k
+

a

2h

[

b0v
n
m + b1v

n
m+1 + b2v

n
m+2

]

= 0

and show that such a scheme is unique.

Section 3.5

1’ a. Show that when the Crank-Nicolson scheme is used to solve a periodic
problem, the system of equations can also be in the following form















b1 c1 0 · · · 0 0 a1

a2 b2 c2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · am−1 bm−1 cm−1

cm 0 0 · · · 0 am bm





























x1

x2

x3
...

xm















=















q1

q2

q3
...

qm















.
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b. This system can also be solved by the following procedure: eliminate
xi from the all the systems and obtain

α0,i+1xi+1 + β0,i+1xi+2 + γ0,i+1xm = h0,i+1,

α1,i+1xi+1 + β1,i+1xm−1 + γ1,i+1xm = h1,i+1,

i = 1, 2, · · · ,m − 3, then find xm, xm−1, xm−2, and xi, i = m −
3,m − 4, · · · , 1, successively. Write down all the formulas for this
procedure.
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Section 4.1

1′ (a) Suppose that if g+ and g− are distinct roots of the equation

ag2 + bg + c = 0,

then the set
xn = c1g

n
+ + c2g

n
−
, n = 0, 1, . . . ,

is a solution of the system






axn+1 + bxn + cxn−1 = 0, n = 1, 2, · · · ,
x0 = c1 + c2,
x1 = c1g+ + c2g−.

(b) Suppose that ḡ is a double root of the equation

f(g) ≡ ag2 + bg1 + c = 0,

i.e.,

f(ḡ) =
df(ḡ)

dg
= 0,

then
xn = c1ḡ

n + c2nḡn−1

is a soltuion of the system






axn+1 + bxn + cxn−1 = 0, n = 1, 2, · · · ,
x0 = c1,
x1 = c1ḡ + c2.

2′ (a) Suppose that ḡ is a m-multiple root of the equation

f(g) ≡ alg
l + al−1g

l−1 + · · · + a1g + a0 = 0,

i.e.,

f(ḡ) =
df(ḡ)

dg
= · · · =

dm−1f(ḡ)

dgm−1
= 0,

then any of the functions

xn = ḡn,

xn = nḡn−1,

· · · ,

xn = n(n − 1) · · · (n − m + 2)ḡn−m+1

10



satisfies

alxn+1 + al−1xn + · · · + a1xn−l+2 + a0xn−l+1 = 0.

(Hint: First show
dk
(

gn+1−lf(g)
)

dgk

∣

∣

∣

∣

∣

g=ḡ

= 0, k = 1, 2, · · · ,m − 1.)

(b) Suppose that g1, g2, g3 and g4 are roots of the equation

f(g) = a7g
7 + a6g

6 + · · · + a1g + a0 = 0

with multiplicity 1, 1, 2, and 3 respectively, then for any c1, c2, · · · , c7,

xn = c1g
n
1 + c2g

n
2 + c3g

n
3 + c4ngn−1

3

+c5g
n
4 + c6ngn−1

4 + c7n(n − 1)gn−2
4

satisfies

a7xn+1 + a6xn + · · · + a1xn−5 + a0xn−6 = 0.

3′ Consider the scheme

vn+1
m + a0v

n
m+1 + b0v

n
m + c0v

n
m−1 + a−1v

n−1
m+1 + b−1v

n−1
m + c−1v

n−1
m−1 = 0,

n = 1, 2, · · · , m = 0,±1,±2, · · · ,

and

v1
m + ā0v

0
m+1 + b̄0v

0
m + c̄0v

0
m−1 = 0, m = 0,±1,±2, · · · ,

with initial values v0
m, m = 0,±1, · · · , where these coefficients in the

scheme depend on k, k being a small positive number. Let g±(θ) be two
distinct roots of the equation

g2 + g
(

a0e
iθ + b0 + c0e

−iθ
)

+ a−1e
iθ + b−1 + c−1e

−iθ = 0.

Show that if

max
θ

|g±(θ)| ≤ 1 + c̄k, c̄ being a positive number independent of k,

then this scheme is stable, i.e., for any n satisfying condition nk ≤ T ,
we have

||vn||2h ≤ cec̄T ||v0||2h, c being a positive number.

where

||vn||2h = h
∞
∑

m=−∞

|vn
m|2, n = 0, 1, · · · , h being a small positive number.
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Section 6.1

1′ Show that

u(t, x) =
1√

t + τ
exp

(−(x − y)2

4b(t + τ)

)

is a solution to the heat equation (6.1.1) for any values of y and τ .

2′ (a) Show that the solution of problem
{

ut + aux = buxx, −∞ < x < ∞, t ≥ 0,
u(0, x) = u0(x), −∞ < x < ∞

is

u(t, x) =
1√
4πbt

∫

∞

−∞

exp

(−(x − y − at)2

4bt

)

u0(y)dy.

(Hint: Let y = x − at and u(t, x) = w(t, y), then show wt = bwyy

first.)

(b) Based on the result in a), show that if t∗ ≥ t∗∗, then the following
inequality

max
m

|u(t∗, x)| ≤ max
m

|u(t∗∗, x)|

holds.

Section 6.3

1′ Find the truncation error of the Du Fort-Frankel scheme and analysis its
stability. Explain why we cannot choose k/h = constant for computa-
tion.

Section 6.4

1′ Show that scheme (6.4.2) satisfies the condition |g|2 ≤ 1 if and only if
bk/h2 < 1/2 and k ≤ 2b/a2, and the condition |g|2 ≤ 1 + ck if bk/h2 <
1/2.

2′ Suppose a > 0. Show that scheme (6.4.7) satisfies the condition |g|2 ≤ 1
if and only if 2bk/h2 + ak/h ≤ 1.

3′ Suppose a > 0. Show that the solutions of scheme (6.4.2) and scheme
(6.4.7) have the property

max
m

|vn+1
m | ≤ max

m
|vn

m|

if bk/h2 < 1/2 & h < 2b/a and 2bk/h2 + ak/h ≤ 1 respectively. Dis-
cuss advantage and disadvantage of scheme (6.4.7) by comparing scheme
(6.4.7) and scheme (6.4.2).
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4′ Show that the scheme

uk+1
m − uk

m

k

=
a

2

(

uk+1
m+1 − 2uk+1

m + uk+1
m−1

h2
+

uk
m+1 − 2uk

m + uk
m−1

h2

)

+
b

2

(

uk+1
m+1 − uk+1

m−1

2h
+

uk
m+1 − uk

m−1

2h

)

is unconditionally stable.
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Section 7.2

1′ Consider the following parabolic partial differential equation:

∂u

∂τ
= a11

∂2u

∂x2
+ 2a12

∂2u

∂x∂y
+ a22

∂2u

∂y2
+ b1

∂u

∂x
+ b2

∂u

∂y
,

where a11 (x, y, τ) ≥ 0, a22 (x, y, τ) ≥ 0, a12 (x, y, τ) = ρ12 (x, y, τ)
√

a11a12

with ρ12 ∈ [−1, 1], and b1, b2 are any functions of x, y, τ . This equation
can be approximated by

i)

uk+1
m,n − uk

m,n

∆τ

=
a

k+ 1

2

11,m,n

2

(

uk+1
m+1,n − 2uk+1

m,n + uk+1
m−1,n

∆x2
+

uk
m+1,n − 2uk

m,n + uk
m−1,n

∆x2

)

+a
k+ 1

2

12,m,n

(

uk+1
m+1,n+1 − uk+1

m+1,n−1 − uk+1
m−1,n+1 + uk+1

m−1,n−1

4∆x∆y

+
uk

m+1,n+1 − uk
m+1,n−1 − uk

m−1,n+1 + uk
m−1,n−1

4∆x∆y

)

+
a

k+ 1

2

22,m,n

2

(

uk+1
m,n+1 − 2uk+1

m,n + uk+1
m,n−1

∆y2

+
uk

m,n+1 − 2uk
m,n + uk

m,n−1

∆y2

)

+
b
k+ 1

2

1,m,n

2

(

uk+1
m+1,n − uk+1

m−1,n

2∆x
+

uk
m+1,n − uk

m−1,n

2∆x

)

+
b
k+ 1

2

2,m,n

2

(

uk+1
m,n+1 − uk+1

m,n−1

2∆y
+

uk
m,n+1 − uk

m,n−1

2∆y

)

or

14



ii)

uk+1
m,n − uk

m,n

∆τ

=
a

k+ 1

2

11,m,n

2

(

uk+1
m+1,n − 2uk+1

m,n + uk+1
m−1,n

∆x2
+

uk
m+1,n − 2uk

m,n + uk
m−1,n

∆x2

)

+a
k+ 1

2

12,m,n

(

uk+1
m+1,n+1 − uk+1

m+1,n−1 − uk+1
m−1,n+1 + uk+1

m−1,n−1

4∆x∆y

+
uk

m+1,n+1 − uk
m+1,n−1 − uk

m−1,n+1 + uk
m−1,n−1

4∆x∆y

)

+
a

k+ 1

2

22,m,n

2

(

uk+1
m,n+1 − 2uk+1

m,n + uk+1
m,n−1

∆y2

+
uk

m,n+1 − 2uk
m,n + uk

m,n−1

∆y2

)

+
b
k+ 1

2

1,m,n

2

(

−uk+1
m+2,n + 4uk+1

m+1,n − 3uk+1
m,n

2∆x

+
−uk

m+2,n + 4uk
m+1,n − 3uk

m,n

2∆x

)

+
b
k+ 1

2

2,m,n

2

(

3uk+1
m,n − 4uk+1

m,n−1 + uk+1
m,n−2

2∆y

+
3uk

m,n − 4uk
m,n−1 + uk

m,n−2

2∆y

)

if b1 (x, y, τ) ≥ 0 and b2 (x, y, τ) ≤ 0. By the von Neumann method,
show that they are stable.

(Hint:

(a) First show that the amplification factor g can be written as g =
1+a+ib
1−a−ib

.

(b) Then show that |g|2 ≤ 1 is equivalent to |1−a− ib|2−|1+a+ ib|2 =
−4a ≥ 0.

(c) Finally show −4a ≥ 0 by using the following inequalities: i). A2 +
B2 + 2ρAB = (A + ρB)2 + B2 (1 − ρ2) ≥ 0 if |ρ| ≤ 1; ii). cos 2θ −
4 cos θ + 3 = 2 (cos θ − 1)2 ≥ 0.

15
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Section 11.2

1′ Consider the leapfrog scheme

vn+1
m − vn−1

m

2k
+ a

vn
m+1 − vn

m−1

2h
= 0, m = 1, 2, · · · ,

with one of the following schemes at boundary

(a) vn+1
0 = vn+1

1 + βn+1,

(b) vn+1
0 = 2vn+1

1 − vn+1
2 + βn+1,

(c) vn+1
0 = vn

1 + βn+1,

(d) vn+1
0 = 2vn

1 − vn−1
2 + βn+1.

Using the Laplace transform given in the book, show that for case (a) or
(b), the method is unstable and for case (c) or (d), the method is stable
for ak/h ∈ (−1, 0],

2′ Suppose we have proved that the leapfrog scheme is stable for initial-
value problem if −1 < ak/h < 1. Consider the following schemes at
boundary

(a) vn+1
0 = vn+1

1 ,

(b) vn+1
0 = 2vn+1

1 − vn+1
2 ,

(c) vn+1
0 = vn

1 ,

(d) vn+1
0 = 2vn

1 − vn−1
2 .

By theorem 11.3.3, show that the leapfrog scheme

vn+1
m − vn−1

m

2k
+ a

vn
m+1 − vn

m−1

2h
= 0, m = 1, 2, · · · ,

with the boundary scheme (a) or (b) is unstable for ak/h ∈ (−1, 0], with
the boundary scheme (c) or (d) is stable for ak/h ∈ (−1, 0], and with
the boundary scheme (a), (b), (c) or (d) is unstable for ak/h ∈ [0, 1).
Also explain why all the computation for ak/h ∈ [0, 1) is unstable and
how this problem should be fixed.

Section 11.3

0′ (THIS SHOULD REPLACE 2’ IN SECTION 11.2) Suppose we have
proved that the leapfrog scheme is stable for initial-value problem if
−1 < ak/h < 1. Consider the following schemes at boundary

17



(a) vn+1
0 = vn+1

1 ,

(b) vn+1
0 = 2vn+1

1 − vn+1
2 ,

(c) vn+1
0 = vn

1 ,

(d) vn+1
0 = 2vn

1 − vn−1
2 .

By theorem 11.3.3, show that the leapfrog scheme

vn+1
m − vn−1

m

2k
+ a

vn
m+1 − vn

m−1

2h
= 0, m = 1, 2, · · · ,

with the boundary scheme (a) or (b) is unstable for ak/h ∈ (−1, 0], with
the boundary scheme (c) or (d) is stable for ak/h ∈ (−1, 0], and with
the boundary scheme (a), (b), (c) or (d) is unstable for ak/h ∈ [0, 1).
Also explain why all the computation for ak/h ∈ [0, 1) is unstable and
how this problem should be fixed.

1′ Suppose we have proved that the Crank–Nicolson scheme is uncondition-
ally stable for initial-value problem. Consider the following schemes at
boundary

(a) vn+1
0 = vn+1

1 ,

(b) vn+1
0 = 2vn+1

1 − vn+1
2 ,

(c) vn+1
0 = vn

1 ,

(d) vn+1
0 = 2vn

1 − vn−1
2 .

By theorem 11.3.3, show that the Crank–Nicolson scheme

vn+1
m − vn

m

k
+ a

vn+1
m+1 − vn+1

m−1 + vn
m+1 − vn

m−1

4h
= 0, m = 1, 2, · · · ,

with the boundary scheme (a) or (b) is stable for ak/h ∈ (−∞, 0]. with
the boundary scheme (c) or (d) is stable for ak/h ∈ (−2, 0] and unstable
for ak/h ∈ (−∞,−2], and with the boundary scheme (a), (b), (c), or (d)
is unstable for ak/h ∈ (0,∞). Also explain why all the computation for
ak/h ∈ [0,∞) is unstable and how this problem should be fixed.

1′′ Suppose we have proved that the Lax–Wendroff scheme is stable for
initial-value problem if −1 ≤ ak/h ≤ 1. Consider the following schemes
at boundary

(a) vn+1
0 = vn+1

1 ,

(b) vn+1
0 = 2vn+1

1 − vn+1
2 ,

(c) vn+1
0 = vn

1 ,

18



(d) vn+1
0 = 2vn

1 − vn−1
2 .

By theorem 11.3.3, show that the Lax–Wendroff scheme

vn+1
m = vn

m − ak

2h

(

vn
m+1 − vn

m−1

)

+
a2k2

2h2

(

vn
m+1 − 2vn

m + vn
m−1

)

,

m = 1, 2, · · · ,

with the boundary scheme (a), (b), (c) or (d) is stable for ak/h ∈ [−1, 0],
and with the boundary scheme (a), (b), (c), or (d) is unstable for ak/h ∈
(0, 1]. Also explain why all the computation for ak/h ∈ (0, 1] is unstable
and how this problem should be fixed.

2′ Suppose we have proved that the Lax–Wendroff scheme is stable for
initial-value problem if −1 ≤ ak/h ≤ 1. By theorem 11.3.3, show that
the Lax–Wendroff scheme

vn+1
m = vn

m − ak

2h

(

vn
m+1 − vn

m−1

)

+
a2k2

2h2

(

vn
m+1 − 2vn

m + vn
m−1

)

,

m = 1, 2, · · · ,

with the boundary scheme

vn+1
0 = vn

0 − ak

h
(vn

1 − vn
0 ) ,

is stable if −1 ≤ ak/h ≤ 0. (Hint: First show that the solution of the
system

{

z = 1 − ak
2h

(K − K−1) + a2k2

2h2 (K − 2 + K−1) ,

z = 1 − ak
h

(K − 1)

is z = K = 1 if ak/h 6= 0 and ak/h 6= −1; then show (i) K+(1) = 1
for a < 0, (ii) when ak/h = 0, the method is stable, and (iii) when
ak/h = −1, K = z and K+

(

eiθ
)

= eiθ.)

3′ Suppose we have proved that the Crank–Nicolson scheme is uncondition-
ally stable for initial-value problem. By theorem 11.3.3, show that the
Crank–Nicolson scheme

vn+1
m − vn

m

k
+ a

vn+1
m+1 − vn+1

m−1 + vn
m+1 − vn

m−1

4h
= 0, m = 1, 2, · · · ,

with the boundary scheme

vn+1
0 − vn

0 + vn+1
1 − vn

1

2k
+ a

vn+1
1 − vn+1

0 + vn
1 − vn

0

2h
= 0,
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is stable if ak/h ≤ 0. (Hint: First show that the solution of the system






z−1
k

+ a z(K−K−1)+K−K−1

4h
= 0,

z−1+(z−1)K
2k

+ a z(K−1)+K−1
2h

= 0

is z = K = 1 if ak/h 6= 0; then show (i) K+(1) = 1 for a < 0, and (ii)
when ak/h = 0, the method is stable.)

4′ Suppose we have proved that the Lax–Wendroff scheme is stable for
initial-value problem if −1 ≤ ak/h ≤ 1. By theorem 11.3.3, show that
the Lax–Wendroff scheme

vn+1
m = vn

m − ak

2h

(

vn
m+1 − vn

m−1

)

+
a2k2

2h2

(

vn
m+1 − 2vn

m + vn
m−1

)

,

m = 1, 2, · · · ,

with the boundary scheme

vn+1
0 = vn

0 − ak

2h
(−vn

2 + 4vn
1 − 3vn

0 ) +
a2k2

2h2
(vn

2 − 2vn
1 + vn

0 ) ,

is stable if −1 ≤ ak/h ≤ 0. (Hint: First show that the solution of the
system

{

z = 1 − ak
2h

(K − K−1) + a2k2

2h2 (K − 2 + K−1) ,

z = 1 − ak
2h

(−K2 + 4K − 3) + a2k2

2h2 (K2 − 2K + 1)

is z = K = 1 if ak/h 6= 0 and ak/h 6= −1; then show (i) K+(1) = 1
for a < 0, (ii) when ak/h = 0, the method is stable, and (iii) when
ak/h = −1, K = z and K+

(

eiθ
)

= eiθ.)

5′ Suppose we have proved that the Crank–Nicolson scheme is uncondition-
ally stable for initial-value problem. By theorem 11.3.3, show that the
Crank–Nicolson scheme

vn+1
m − vn

m

k
+ a

vn+1
m+1 − vn+1

m−1 + vn
m+1 − vn

m−1

4h
= 0, m = 1, 2, · · · ,

with the boundary scheme

vn+1
0 − vn

0

k
+ a

−vn+1
2 + 4vn+1

1 − 3vn+1
0 − vn

2 + 4vn
1 − 3vn

0

4h
= 0,

is stable if ak/h ≤ 0. (Hint: First show that the solution of the system






z−1
k

+ a z(K−K−1)+K−K−1

4h
= 0,

z−1
k

+ a z(−K2+4K−3)−K2+4K−3
4h

= 0

is z = K = 1 if ak/h 6= 0; then show (i) K+(1) = 1 for a < 0, and (ii)
when ak/h = 0, the method is stable.)
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6′ Suppose we have proved that the leapfrog scheme is stable for initial-
value problem if −1 < ak/h < 1. By theorem 11.3.3, show that the
leapfrog scheme

vn+1
m − vn−1

m

2k
+ a

vn
m+1 − vn

m−1

2h
= 0, m = 1, 2, · · · ,

with the boundary scheme

vn+1
0 − vn

0 + vn+1
1 − vn

1

2k
+ a

vn+1
1 − vn+1

0 + vn
1 − vn

0

2h
= 0,

is stable if −1 < ak/h ≤ 0. (Hint: First show that the solution of the
system

{

z−z−1

2k
+ aK−K−1

2h
= 0,

z−1+(z−1)K
2k

+ a z(K−1)+K−1
2h

= 0

is K = z and K = 1/z if ak/h 6= 0; then show (i) only z = K = 1 and
z = K = −1 need to be considered, and K+(1) = 1 and K+(−1) = −1
for a < 0, and (ii) when ak/h = 0, the method is stable.)

7′ Suppose we have proved that the Crank–Nicolson scheme is uncondition-
ally stable for initial-value problem. By theorem 11.3.3, show that the
Crank–Nicolson scheme

vn+1
m − vn

m

k
+ a

vn+1
m+1 − vn+1

m−1 + vn
m+1 − vn

m−1

4h
= 0, m = 1, 2, · · · ,

with the boundary scheme

vn+1
0 = vn

0 − ak

h
(vn

1 − vn
0 ) ,

is stable if −2 < ak/h ≤ 0, and is unstable if ak/h ≤ −2. (Hint: First
show that the solution of the system

{

z−1
k

+ a z(K−K−1)+K−K−1

4h
= 0,

z = 1 − ak
h

(K − 1)

is z = K = 1 and K =
2

−ak/h
− 1 if ak/h 6= 0; then show (i) K+(1) = 1

for a < 0, (ii) when −2 < ak/h < 0, the methed is stable and when
ak/h ≤ −2, the methed is unstable, and (iii) when ak/h = 0, the methed
is stable.)
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