Supplement Exercises to MATH 5176
Section 1.2
1’ Prove Theorem 2.2 in the reference materials [4].
Section 1.3

1’ Find the truncation error of

n+1 n n+l n+1 n+1
vt — vy ta a3vm dvp ™+ o0,

k 2h
vy, —4vy _ + U0,

2h

+(1—-«) =0, a€]l0,1],

ou ou
which is approximate to — + a— = 0.

ot or



Section 2.1

1" For a periodic funciton f (z) which is piecewise continuious on [—L, L]
and has a left-hand derivative and right-hand derivative at each point of
the interval [—L, L], we have its Fourier series

f@)=a+ > <am oS mzx + by, sin mx) :
m=1

L
where
ap = ﬁff,;f(ﬁ) dx
Ay = %fﬁL f () cos mwxdx’
by = %fﬁL f (z)sin mmbdw,

m=1,2,---.

Suppose that a function is defined on a grid: = mh, m =0,+1,£2,-- -,
and suppose the value of the funciton on x = mh is v,,.

Based on the result on Fourier series, show that v,, can be expressed as

m/h zmhé’
Um — d )
TS e €
where 1
1) == 3 e,

V21 &
2" Show the Parseval relation ||9]|7 = [|v]|>
Section 2.2
1”7 Show that for any [, the following holds:

l
. 2j 0
coslf = > e sin¥ 2
=0 2
. g 0! 9
sinlf = sin—cos= Y & sin® =
22 & 2’

where ¢;; and €;; are constants.

2’ Necessary and sufficient conditions for
f0+flsin2%—|—fgsin4% > 0

are

N

fo=>0, 2fo+ fi+2[fo(fo+ fit+ f2)]2 >0, fo+fi+fo>0.
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67

77

1t 3 (=1)" O dr (0) dy (6) = 0

then the matrix

@=2(= 1) Dy D,
is a ”pseudo-null” matrix. Here Hj (1) is equal to either 0 or 1.

If dj () dy (0) — d3 () da (6) > 0, then the matrix DDy — DDy can be
represented by a sum of one nonnegative definite matrix Z and pseudo-
null matrix Q).

Consider
Un+1

m m

k 2

m

oh oh =0

1 1
- a {31};}1“ 4ot ot 30 — 4ot + U,ZQ}

In order for the Von Neumann condition to hold, what condition does

% should satisfy?

h
Consider
ot — orth — ot ot — "
m m m m— 1 — m+1 m—1 _ 0
—— ta {&—Qh +(1—-a) BT 1

In order for the Von Neumann condition to hold, for any o € [O, %} , what

1

k
condition does % should satisfy? For any a € [5, 1], what condition

k
does % should satisfy?

Counsider the inverse Lax-Friedichr scheme

1/, n+l n+1Y _ n+1 n+1
( U1 T Uyl 1) U, avm—i-l “—Unp—1 0

k 2h

In order for the Von Neumann condition to hold, what condition does

% should satisfy?

Using the Von Neumann analysis to show the stability condition of the
scheme

2 5 +

h h

n+1 n n+l _  n+l n __ ,n
Un  —Unp a (Um—i—l U, U, Um—l)

and show that the truncation error is O (k%) + O (h?).
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10’

11

12

13’

Using the Von Neumann analysis to find the stability condition of the
scheme

I 5 +

n+1 n ntl _  ntl n __ ,n
Un = — Unm g Um+1 Um Um Um—1
h h

If the following holds:
T < (1+¢h) T, n=0,1,2,---
and )
— "5 < T" < e "l n=0,1,-+,
then we can prove that the scheme is stable.

Using the Theorem 1 in the reference material [3], prove that a horizontal
3-point scheme

n+1 n+1

n+1
T —1mYUm— 1+r0m m

+ 7ﬂlm m—+1

- S—Im m—l + SO,mvm + Sl,mvm—i-l
is stable, if the conditions (i)-(iv) in Theorem 1 hold.

Show that a; sin® g + as sin* g + a3 sin® g can be written as
> di (0) mud; (0)
]

and m; will be positive numbers if

N|=

a120, CL1+CL2+CL320, 2a1+a1+2[a1(a1+a2+a3)] > 0.

Show that a horizontal four-point explicit scheme with variable coeffi-
cients

n+1 n n n n _
Uy = S_1mUp_y + SomUp, T StmUnir T S2mUnmias  (Sim = 8i (Tm))

is stable if the Von Neumann condition is satisfied at all the points

. 2¢.

and 0si () and Psi (x) are continuous functions and bounded, i =
ox Ox?

-1,0,1,2.

Show (1+ )™ < e® for any > 0 if @ > 0. (Hint: 1. show that

(1+1)*™ in an increasing function on (0,00) if @ > 0. 2. If f(a) >
f(b) >0 and % < 0 on [a,bl], then f(x) >0 on [a,b].)
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15’

16’

17

18’

Show that when Von Neumann alaysis is used, replacing v e by g
and v

n+k z(m—l—j)@

n+k

ot by ¢g"e? will generate the same g.

Counsider the scheme

+1 “+1
Uy Fom I n+l _  n+l + 4on
2 2 i avm+1 Unm Um+1 T U

k 2h

=0

and define A = % Find out the condition aA should satisfy in order for
the scheme to be stable by using Von Neumann analysis.

Show that f(z) = 1 4+ 2 — 4a®X*z® > 0 on [0, 1] is true if and only if
a?\? < 1
_— 2'

Find out when the scheme

Qv + (1= a) ot = o,

is stable, and when it is unstable by using Von Neumann analysis.

Find the stability condition for each of the following scheme

(a)

(b)

Ut = Upa — U,
+a =0;
k h
U U = U
+a =0;
k h
= U Um+1 — Um—1
+a = 0;
k 2h
n+1 1 n
2 ( m+1 + Um 1) Umt1 = Ump—1 —0:
k 2h 7
~n—+1 n n
Um U, 4 Um+1 Um—1 —0
k 2h ’
n+1 1 (~n+1 n+1 n+1
m v ( Uty + 20,7 + 0, )



Section 3.1

0" (a) Show
ou(t,z)  3Bu(t,zr)—4u(t,r—h)+u(t,x—2h) 5
ox B 2h +0(r%),
Pu(t,r)  u(t,x)—2u(t,x—h)+u(t,z—2h)
52 = 2 +0(h).

(b) Show that for 2% 4 a2 =0

A X
optt = U:Z_% (3vy, — Ay + 05 ) Jr062

is a second order scheme.

0” Find the truncation error of

N IR L e
—— 4a |«
k 2h
vt — 4o o,
1—a)—= Z = =0, ae€]0,1],
+(1-a) = 0.1
o ) ou ou . )
which is approximate to En + aa— = 0. (Hint: Use Taylor series at
x
t=1"*"Y2 and x = z,,.)
, . ou Ju _
1’ a Consider e + a(z,t) Fr f(x,t). For this case, the MacCormack
x
scheme given on page 77 can be rewritten as
Um_|—1 = Uy — 9 (Um+1 - Umfl) + 9 (Um+1 - 2Um + Umfl)

k n kA
5 (4 £0) = == (fn = fay)

If a(z,t) = constant, it is a second order scheme. What is the
truncation error of the scheme if a(x,t) depends on z,t. If its
truncation error is not O (k%) + O (h?), derive a similar scheme
whose truncation error is O (k?) + O (h?) .

b Replacing a (z,t) by a(u), study the problem mentioned in (a).

2’ Show
n+% n+%
un+1_un L 8um7% h@um%
m_— Bmel = O (K?) if h = ck.
K o tr o TOW) ifh=c

(Hint: Use Taylor series at t = t"*Y/2 and x = x,,_12.)

6



2” Consider 8“ + ag“ = 0 with @ > 0. For this case we have the following

scheme \
nti a
Um 2 =0, — > (U;}1 — Ufn_l)
1
n+l __ "+2 n+s3
vt =) (aA—l)( —v,, 3.

Find its truncaiton error and the stability condition.
3’ Show that the two-step scheme

~n+% n a’ )\

o™ k n
Um = U, — T(’Um+1 )"’_f
o = = (a0 1) (7 -0 e

is a second-order scheme approximating to

ou ou
a—i—a(z t)ﬁx f(z,1)
and
ou ou , n "
5 +a(u) i f(z,t) (In this case a;, means a (u;,)) .

3” Consider the scheme

n+1 n n+1 n+1 n n
optt—or o a (vt — o vl —
k 2 n T h =0

Show that its truncation error is O (k%) + O (h?).

4’ Prove Theorem 3.1.4 on page 71.
Section 3.2

1’ (a) Modifying the MacCormack scheme given in the book (page 77), so
that it is a second order scheme approximating to

ou ou
E—i—a(m t>8x f(x,t).

(b) Modifying the MacCormack scheme given in the book (page 77), so
that it is a second order scheme approximating to

ou ou
W) = f (1),



2’ For each case given in Appendix A, determine whether or not the com-
putation is stable and the order of the scheme by using the last two
results if it is stable, and explain how the theoretical results support
your conclusion.

3’ For each of the two cases given in Appendix B, determine whether or
not the computation is stable and whether or not the result is correct,
and explain how the theoretical results support your conclusion.

4’ Show that the Lax—Wendroff scheme is stable if and only if |a\| < 1.

5" Show that the Crank-Nicolson scheme is unconditionally stable.
Section 3.4

17 Derive the explicit one-sided second order scheme using a two-step method
by which we derive the L-W scheme and analyze its stability condition.

ou ou
2" Derive an implicit one-sided second order scheme to En + Ao = 0 in
x
the form
U?n+1_vyn a b n+1 b n+1 b n+1 b bio" bor” -0
k +ﬁ |: 0V, T 1Um11 + 2Um+2+ 0V, T 1Um+t1 + 2vm+2] -

show that such a scheme is unique and analyze its stability condition.

0
3’ Derive an explicit one-sided second order scheme to a—? + aa—u = 01in
x
the form
ot — g
T =+ ﬁ [b(ﬂ);ll —+ blvfn—}-l + b2v77717,+2:| = 0

and show that such a scheme is unique.
Section 3.5

1”7 a. Show that when the Crank-Nicolson scheme is used to solve a periodic
problem, the system of equations can also be in the following form

bl C1 0o --- 0 0 aq T q1
as bg Cy - 0 0 0 ) q2
. . . . . T3 _ g3
0 0 0 Am—1 bm—l Cm—1 :
cm 0 0 0 m, b T Gm



b. This system can also be solved by the following procedure: eliminate
x; from the all the systems and obtain

Q0,i4+1Tiv1 + Bois1Tiv2 T Yoir1Tm = o1,

1,1 %1 + B Tm—1 + V1,1 Tm = i,

1 =1,2,--- ,m — 3, then find z,,, x,_1, Tp_o, and x;, 1 = m —
3,m —4,--- 1, successively. Write down all the formulas for this
procedure.



Section 4.1
1" (a) Suppose that if g, and g_ are distinct roots of the equation
ag® +bg+c=0,

then the set
xnzclgi—i_CQgﬁa TL:O,l,...,

is a solution of the system

atpi1 +br, +cr,1 =0, n=12,---,
Ty = C1 + Ca,
Ty = 194 + C2g-.

(b) Suppose that g is a double root of the equation
f(9) = ag® +bg' + ¢ =0,

ie.,

then
Ty = 19" + cong" !

is a soltuion of the system

arpi1 +bx, +cry, 1 =0, n=1,2,---,
To = C1,
Ty =g+ Ca.

2" (a) Suppose that g is a m-multiple root of the equation

flo)=agd +a 19"+ +a1g+ay =0,

ie.,
fg =29 _ e
dg dgm—l )
then any of the functions
Tn = gna
T, = ngnfl7

Ty

T, = n(n—l)...(n_m+2)gn—m+1

10



satisfies
UTpi1 + Q1Ty + -+ Q1 Tp 12 + A0Tp—g41 = 0.

dk (gn—i-l—lf(g))

(Hint: First show i

=0, k=1,2,---,m— L)
9=g

(b) Suppose that g, g2, g3 and g4 are roots of the equation
flg) =azg" +agg® + -+ arg+ag =0
with multiplicity 1, 1, 2, and 3 respectively, then for any ¢y, co, - - - , ¢7,

Tn = C197 + C2gh + c3gy + cangy !

+csgy + congy "+ em(n — 1) gy

satisfies

A7Tp41 + 6Ty + -+ + A1Tp—5 + agTp_g = 0.

3" Consider the scheme

O+ agull g 4 bovl + coul g+ a—qui bl el =0,
n=12---, m=0,£1,£2,---,
and
1, - .0 7.0 =0 _
Uy, + AoV, + bovy, + vy, =0, m=0,%£1,4£2,---,
with initial values v2, m = 0,£1,---, where these coefficients in the

scheme depend on k, k being a small positive number. Let g+ (6) be two

distinct roots of the equation
9 +yg (aoew + by + Coefia) +a 169 +b 1 +c 17 =0.
Show that if

max lg£(0)] <1+ ¢k, ¢ being a positive number independent of k,

then this scheme is stable, i.e., for any n satisfying condition nk < T,
we have

[[0"]]2 < ce®||°]|2, ¢ being a positive number.

where

oo
[v"||2 = h Z ">, m=0,1,---, h being a small positive number.

m=—0o0

11



Section 6.1

1" Show that

(t ) 1 —(l’ — y)2
u(t,r) = exp | ———+
Vit P\ ab(t+ 1)
is a solution to the heat equation (6.1.1) for any values of y and 7.
2’ (a) Show that the solution of problem

Uy + auy = by, —oco<zxr<oo, t>0,
u(0,2) = ug(x), —o00 <z <00

is

ult,z) = \/ﬁ /_ Z exp (‘“” = “”2) wo(y)dy.

(Hint: Let y =  — at and u(t,z) = w(t,y), then show w; = bwy,

first.)
(b) Based on the result in a), show that if t* > ¢**, then the following
inequality
max |u(t*, x)| < max |u(t™, )|
holds.
Section 6.3

1" Find the truncation error of the Du Fort-Frankel scheme and analysis its
stability. Explain why we cannot choose k/h = constant for computa-
tion.

Section 6.4

1’ Show that scheme (6.4.2) satisfies the condition |g|* < 1 if and only if
bk/h? < 1/2 and k < 2b/a?, and the condition |g|* < 1+ ck if bk/h* <
1/2.

2 Suppose a > 0. Show that scheme (6.4.7) satisfies the condition |g|* < 1
if and only if 2bk/h? + ak/h < 1.

3’ Suppose a > 0. Show that the solutions of scheme (6.4.2) and scheme
(6.4.7) have the property

max [0 < max |07
if bk/h* < 1/2 & h < 2b/a and 20k/h* + ak/h < 1 respectively. Dis-

cuss advantage and disadvantage of scheme (6.4.7) by comparing scheme
(6.4.7) and scheme (6.4.2).

12



4" Show that the scheme

k+1 k
Uy = — Uy
k
k+1 k+1 k+1 k k k
o g U1 — 2'u’m + U1 o 2um + U1
2 h? h?
k+1 k+1 k k
b (U — U X U1 — Uy
2 2h 2h

is unconditionally stable.

13



Section 7.2

1" Consider the following parabolic partial differential equation:

@—a @—I-Qa _8214 +a @—l—b@%—b%
or  "ox? Poroy T Poy2 T loxr T oy’

where ayy (7,y,7) > 0,a2 (z,y,7) > 0,012 (z,y,7) = p15 (2,9, T) Vaiar
with py, € [—1,1], and by, by are any functions of x,y, 7. This equation
can be approximated by

i)

k1 ok
um,n um,n
AT
1
Loy WFTL gkl 4kl uk —ouk 4ok
o 11,m,n m+1,n m,n m—1,n + m—+1,n m,n m—1,n
2 Ax? Ax?
k+1 k+1 k+1 k+1
k+% um—}—l,n—i—l - U’m—i—l,n—l - um—l,n+1 + um—l,n—l
+a12,m,n 4A$Ay
k k k k
+um+1,n+1 - U’m—i—l,n—l - um—l,n+1 + um—l,n—l
4Az Ay

kt3 k1 kil k1
a22,m,n (um,n—l—l - 2um,n + um,n—l

+
2 Ay?
k k k
+um,n+1 - 2um,n + Uy n—1
Ay?
ket s k1 k1 k k
+b1,m,n Umtin = Um—1n + Umtin = Um—1n
2 2Ax 2Ax
kg k1 k1 k k
+bZ,m,n Upynt+1 — Umn—1 + um,nJrl - U’m,nfl
2 2Ay 2Ay

or

14



ii)

N

m,n um,n
AT
k+3 k+1 k1 | ktl k k k
. all,m,n um—i—l,n - 2um,n + um—lm, + um—i—l,n - 2um,n + um—l,n
n 2 Az? Az?
+a’1€;§m (ufntrll,nJrl - Ufnﬁl,nq - Uﬁztlmﬂ + uﬁ”j:ll,nfl
o 4Az Ay

+

k k k k
um+1,n+1 - uerl,nfl - umfl,n+1 + U’mfl,nfl
4Az Ay

+

k+3 k+1 k41 k+1
a?Z,m,n um,n—l—l - 2um,n + um,n—l
2 Ay?

+

k k k
um,n—i—l - 2um,n + umm,—l
Ay?

kit s k1 k1 k1
+bl,m,n <_um+27n + 4um+l,n - 3um,n

2 2Ax

+ _uﬁl—‘rln + 4u7]?n+1,n - 3“’7]31,71
2Ax

2.mmn m,n—1 m,n—2

+ 2 2Ay

k+31
by 2 (3u§ﬁ—4uk+1 + uftl

k k k
_|_3um,n - 4um,n—1 + um,n—2>

2Ay

if by (z,y,7) > 0 and by (z,y,7) < 0. By the von Neumann method,
show that they are stable.

(Hint:

(a) First show that the amplification factor g can be written as g =
Lt+a+tib
T—a—ib"

(b) Then show that |g|*> < 1 is equivalent to |1 —a—1b|*> — |1 +a+ib|* =
—4a > 0.

(c) Finally show —4a > 0 by using the following inequalities: i). A? +
B2+ 2pAB = (A+ pB)* + B2 (1 — p?) > 0/if |p| < 1; ii). cos26 —
dcosf+3=2(cosh —1)° > 0.

15
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Section 11.2

1/

2/

Consider the leapfrog scheme

1 n—1 n n
vt — oL — ot
m o7 m a m+12h m—1 O, m 172’_“ 7

with one of the following schemes at boundary

Using the Laplace transform given in the book, show that for case (a) or
(b), the method is unstable and for case (c) or (d), the method is stable
for ak/h € (—1,0],

Suppose we have proved that the leapfrog scheme is stable for initial-
value problem if —1 < ak/h < 1. Consider the following schemes at
boundary

(a) vptt =,

(b) v(?)"b-i-l _ 2vn+1 Un+1
9

(c) vg*! =,

(d) vg™ = 20p — vy

By theorem 11.3.3, show that the leapfrog scheme

+1 n—1 n n
vt — Uy — Uy
m m +am+ m =0, m=12,---,

2k 2h

with the boundary scheme (a) or (b) is unstable for ak/h € (—1,0], with
the boundary scheme (c) or (d) is stable for ak/h € (—1,0], and with
the boundary scheme (a), (b), (c) or (d) is unstable for ak/h € [0,1).
Also explain why all the computation for ak/h € [0,1) is unstable and
how this problem should be fixed.

Section 11.3

O/

(THIS SHOULD REPLACE 2’ IN SECTION 11.2) Suppose we have
proved that the leapfrog scheme is stable for initial-value problem if
—1 < ak/h < 1. Consider the following schemes at boundary

17



1/

1//

(a) UO = )
(b) U(r)z—i-l — 21}114-1 Ug—&-l,
(c) vp™ = oy,

)

By theorem 11.3.3, show that the leapfrog scheme

Un-i—l _ Un—l 7 1= v L
m m m m— — — 1 2 .
) 0, m=12-",
with the boundary scheme (a) or (b) is unstable for ak/h € (—1,0], with
the boundary scheme (c¢) or (d) is stable for ak/h € (—1,0], and with
the boundary scheme (a), (b), (c¢) or (d) is unstable for ak/h € [0,1).
Also explain why all the computation for ak/h € [0,1) is unstable and

how this problem should be fixed.

Suppose we have proved that the Crank—Nicolson scheme is uncondition-
ally stable for initial-value problem. Consider the following schemes at
boundary

(a) vp™t =",

(b) vg-i—l — 21}7114—1 o US—H,
(c) ug™t =,

(d) vg™ =207 — vy

By theorem 11.3.3, show that the Crank—Nicolson scheme

n+1 n n+1 n+1 n n
v - Umt1 = Umi1 T Vg1 — Uppq
m mo4 gt m mt ml—-0, m=12--

k 4h

T

with the boundary scheme (a) or (b) is stable for ak/h € (—o0,0]. with
the boundary scheme (c) or (d) is stable for ak/h € (—2,0] and unstable
for ak/h € (—oo0, —2], and with the boundary scheme (a), (b), (c¢), or (d)
is unstable for ak/h € (0,00). Also explain why all the computation for
ak/h € [0, 00) is unstable and how this problem should be fixed.

Suppose we have proved that the Lax—Wendroff scheme is stable for
initial-value problem if —1 < ak/h < 1. Consider the following schemes
at boundary

18



3/

(d) vgtt =20 — vyt
By theorem 11.3.3, show that the Lax—Wendroff scheme

k 2k
5 (it = vhs) + g (Vs — 200 00 )

m=1,2,---,

n+1 n
Um = Uy — ﬁ (Uerl

with the boundary scheme (a), (b), (c¢) or (d) is stable for ak/h € [—1, 0],
and with the boundary scheme (a), (b), (c), or (d) is unstable for ak/h €
(0,1]. Also explain why all the computation for ak/h € (0, 1] is unstable
and how this problem should be fixed.

Suppose we have proved that the Lax—Wendroff scheme is stable for
initial-value problem if —1 < ak/h < 1. By theorem 11.3.3, show that
the Lax—Wendroff scheme

ak a’k?

v = v = 5y (U = Vi) + g (U — 200+ vn)
m = 17 27 )
with the boundary scheme
vt o= ug— 7(“1 —v5),

is stable if —1 < ak/h < 0. (Hint: First show that the solution of the
system

{z:1—%(K—K—1)+a2’f2(K—2+K—1),

202
z=1-%(K-1)
is 2z = K = 1if ak/h # 0 and ak/h # —1; then show (i) K (1) =1
for a < 0, (ii) when ak/h = 0, the method is stable, and (iii) when
ak/h=—1, K =z and K, (") = ¢".)

Suppose we have proved that the Crank—Nicolson scheme is uncondition-
ally stable for initial-value problem. By theorem 11.3.3, show that the
Crank—Nicolson scheme

n+1 n n+l _  n+l n )
m — Um + avm+1 Um—1 + U1 Um—1 o
k 4h

v

with the boundary scheme

Un+1 —Un+Un+1 — ,Un+1 _Un+1+,0n_vn
0 0 1 1 +a 1 0 1 0 _

2k 2h

19



4/

is stable if ak/h < 0. (Hint: First show that the solution of the system

2—1 2(K—K H4K-K-1
— ta in =0,

2—14+(z—1)K H(K-1)+K—-1
2% ta 2h =0

is z = K = 1if ak/h # 0; then show (i) K, (1) =1 for a < 0, and (ii)
when ak/h = 0, the method is stable.)

Suppose we have proved that the Lax—Wendroff scheme is stable for
initial-value problem if —1 < ak/h < 1. By theorem 11.3.3, show that

the Lax—Wendroff scheme
ko, . " a’k?

n a n n n
U — ﬁ (vm—i-l - Um—l) + W (vm+1 - 2vm + vm—l) )

m=1,2--,

n+1
U,

with the boundary scheme

ak a’k?

~ o (= + 40 — 3uf) + 72

is stable if —1 < ak/h < 0. (Hint: First show that the solution of the
system

n+l _ n
Yo = Y

(vy =207 + 7)),

2h?

p=1- % (K- K )+ B (K-2+K"),
p=1—%(K? 4 4K - 3) + 2B (K? — 2K +1)
is z = K = 1if ak/h # 0 and ak/h # —1; then show (i) K (1) =1
for a < 0, (ii) when ak/h = 0, the method is stable, and (iii) when
ak/h=—1, K =z and K, (") = ¢".)

Suppose we have proved that the Crank—Nicolson scheme is uncondition-
ally stable for initial-value problem. By theorem 11.3.3, show that the
Crank—Nicolson scheme
n+1 n n+1 n+1 n n
m  — Um Umt1 = Unm—1 + Umt1 = Um—1

=0 =1,2,---
k: + a 4h Y m ) ) Y

with the boundary scheme

v

vptt — P N —op T 4ot — 30l — 0B+ doh — 30p
a
k 4h
is stable if ak/h < 0. (Hint: First show that the solution of the system

=0,

2—1 H(K-K D)+K-K~!
R Ta an =0,

_ —K?44K-3)—K2?+4K-3
zk1+az( + 4}3 + -0

is z = K = 11if ak/h # 0; then show (i) K. (1) =1 for a < 0, and (ii)
when ak/h = 0, the method is stable.)
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Suppose we have proved that the leapfrog scheme is stable for initial-
value problem if —1 < ak/h < 1. By theorem 11.3.3, show that the
leapfrog scheme

n+l _ ,n—1
Um Um

n n
2]m—&—l — Upmp—1
0,

a = m=1,2
ok T an S
with the boundary scheme
R N av’f“ — a4 o — o o,
2k 2h

is stable if —1 < ak/h < 0. (Hint: First show that the solution of the

system

zfz’1 —K—1 _

{ i tat5— =0,
p—l+(z—1)K | 2(K—1)+K—-1 _
2k + 2h =0

is K = z and K = 1/z if ak/h # 0; then show (i) only z = K = 1 and
z = K = —1 need to be considered, and K, (1) =1 and K, (—1) = —1
for a < 0, and (ii) when ak/h = 0, the method is stable.)

Suppose we have proved that the Crank—Nicolson scheme is uncondition-
ally stable for initial-value problem. By theorem 11.3.3, show that the
Crank—Nicolson scheme

n+1 n n+l _  n+l n _an
Um = — Uny Um+1 Um—1 + Um+1 Um—1 o
— 4a - —0, m=1,2,---,

with the boundary scheme

is stable if —2 < ak/h < 0, and is unstable if ak/h < —2. (Hint: First
show that the solution of the system

- AK—K~)4K-—K~! _
L +a a5 =0,
z=1-%(K-1)
2
isz=K=1and K = W 1 if ak/h # 0; then show (i) K (1) =1
—a

for a < 0, (ii) when —2 < ak/h < 0, the methed is stable and when
ak/h < —2, the methed is unstable, and (iii) when ak/h = 0, the methed
is stable.)
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