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Abstract

[2,3]

In the seventies we obtained some results on stability of difference

schemes for initial-boundary-value problems of linear diagonalized hyperbolic systems
in two independent variables. Later[4] these results were extended to general linear

hyperbolic systems with "moving boundaries" and some convergence theorems were esta-
YPE: Y g

blished. In [1], we completed some proofs of 'global' convergence of difference
schemes for general quasilinear hyperbolic initial-boundary-value problems with
moving boundaries. Recently, more results on convergence have been derived. From
these results we know that when we solve a quasilinear hyperbolic system using
certain second order Singularity-Separating difference methods[3] (separating dis-
continuities, weak discontinuities etc.), the approximate solution will converge to
the exact solution with a convergence rate of At? in L2 norm, no matter whether or
not there exist some discontinuities, such as shocks, contact discontinuities. 1In

this paper we shall summarize our main results on this subject.

1. INITTAL-BOUNDARY-VALUE PROBLEMS

ILet us consider the following initial-boundary-value problem for quasilinear
hyperbolic systems in two independent variables.
1. A qguasilinear hyperbolic system

U == W _ ==

g—t + AT, x, t) 57 = T, %, t) (1.1)
is given in L regions: x2_1(t) <X < xpv(t), o<tcm,
2=1,2,°°°,L.

2. On external boundaries and internal boundaries x = xg(t),

2 =0,1,---,L, a number of nonlinear boundary conditions are prescribed:

Bo(ﬁo+r Xol Zol t) =0,
= =+
B, (0, Upy xpy 29y ) =0, 2=1,2,0+, L -1, (1.2)

BL(ﬁi_, Xpr Zpg t) =0,
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where
ax, (t)
ZQ,=—a_t-_l 2 =0,1,°°-,L. (1.3)
3. At t = 0 initial values are specified:

U(x,0) = Dy (x), for X, 1(0) <x <x(0), &=1,2,"",L, (1.4)

xg(0) = Cogr ? «0) =c 2 =0,1,°°°,L.
r

1,0
It is required to determine U in the L regions and xi(t), zg(t) for 0 <t <T,
2=0,1,°°,L. Here ﬁ}F,E& are N1 - dimensional vectors, A— an N1 X N1 matrix,
—t —_
Bp T dimensional vectors and U}/ = ﬁiﬂt) = lim U(x,t). Without loss of
XX ()0
generality, we assume that the initial values (1.4§'satisfy the boundary conditions

(1.2). In fact, if initial values are discontinuous at some point, we should solve
a Riemann problem to determine how many and what types of internal boundaries need
to be introduced; if initial values do not satisfy some external boundary conditions,
a similar procedure should be done. Therefore the initial values always match the

boundary conditions. The hyperbolic type means that A has the following expression

-G TF, (1.5)
where x _
G1 A1 0
s ] 2
G = : and A= “

=
o
Z>’

*
are a nonsingular real matrix and a real diagonal matrix respectively, G n being

the transpose of a column vector Eh. In the following we assume szizi "'iiN and

- dx 1
define By = the number of A; 9 which are less than or equal to EE&V and qﬁ = the
9
number of A~ which are greater than or equal to —=- , where ax = lim
n, 4% dat M0 yex (£)20
=x (t)2

in(x,t). We require the boundary conditions (1.2) are compatible with the equation
(1.1). That is, we suppose that vj satisfy

v o * Pg = N1 + 1,

Vo o+ p2 + q, = 2N, + 1, 2= 1,2,°°°,L-1, (1.6)

=N, + 1,

and furthermore, the systems

BO([_JS' XOI ZO' t) =0,

—+ =+ +
G0y Yo = Fo »
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Gy =T
{B,L(G;, ﬁ;, X 2y £) = 0, L=1,2,°"°, 1-1,
é&) vt =F, (1.7)

B0, w2 £ < 0
3

always have "entropy-satisfying" solutions ﬁg, zgi 0, ﬁg,, zg, 9=1,2,°++,L-1;

UL,zL

B - 9 - dimensional vectors and

, respectively if reasonable xg, Fg, Fy and t are given. Here Q:, F}l are

. -
GN(1&+1 1
—t : —_— _ °
Sy = 5 () e
1 x=x) (£)+0, % x=x9 (£)-0.

In order to make numerical computation easy, we introduce the following coordinate

transformation

X - X ;ﬁt)

St T Mg (B cxox (),

L= 1,2,°°°, L,
t=t.

Clearly, the boundary x = x¢ (t) in the x - t coordinate system corresponds to

the straight line & = £ in the & - t coordinate system. For U

Q. _23 , 9 3
ot 9t T 3t g !
9 _9& 3

ox  3x  3g’
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where
0E (_22_1)(XSZ,—XIL-1)—(X-X,Q..1)(ZQ_Z5L_1)
t : ’
o (xy - XsL-1)2
o8 ! for < < £ =1,2,°°°,L
N T % —w ¢ XQ_ X Xy =lrsy rhe
9 x X =X 4 1
Therefore (1.1) can be transformed into
U - 30 =
%‘E+A1a—g=F' (1.8)
where
- 3E —
A (U,X,2,8,t) = %gt" IN1 + 5% A,
IN being an N1 X N1 unit matrix, X = (xo,x1,-~-,xL)T, and

. T
Z = (zO, Zirc ZL) R
For convenience to theoretical proof, in what follows, the ordinary differen-

tial relations (1.3) are understood as some hyperbolic partial differential
equations. Therefore, defining

[i] A, 0 F

U= v A = ’ F = ,
X 0 0 Z

we can combine (1.8) and (1.3) to

oU 39U
Prals A(U,Z& ,t) a? = F(U,Z,E,t).

Thus, (1.1)-(1.4) can be rewritten as:
1. A quasilinear hyperbolic system

3
B+ AU,2,58) 5% = F(U,2.5,1) (1.9)

is given in L regions: 2-1<g <8, 0<t<T, 2=1,2,°--, L.
2. On the straight boundaries £= ¢, ¢=0,1,---,L, a nunber of nonlinear
boundary conditions are prescribed:
Bo(ug, zg, t) = 0,

BSZ,(U,QT’ U+Q,I Zogr t) =0, L= 1,2,--,L-1, (1.10)
B (U, z, t) = 0.

3. At t = 0, initial values are specified:

U@N):%@) for ¢-1<¢& <y, e=1,2,°°", L,
(1.11)
z(0) =c¢,,

where D, and C, are (N1+.L +1)-and (L + 1)-dimensional vectors respectively.

We need to determine U in the L regions and 2 for 0 < t < T. Let
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< 9 9& —
G 0 Nt IN1 + X A 0
G = N =
7 1
0 IL+1 0 0
we have
a=c¢" 1c.
Therefore, (1.9) can be written as
oU U
A =—= = .
G I G 3e GF. (1.12)

2. DIFFERENCE SCHEMES

The system (1.12) can further be rewritten in the form

*
U, gr g n=1,2,°"°,N, (2.1)

c*
®n 5t n n 3¢ n’

QL

where G;fl is the n-th row of G, An is the n-th diagonal element of 1 , fn is the
n-th component of GF and N = N1 + L + 1. In what follows, we will discuss the
discretization of (2.1).

In each subregion #-1< £<4, 0<t<T, we make a rectangular mesh with
mesh sizes Ag= 1/MJL and At, Mg being an integer. For convenience, in what

follows, we assume M = My for all &, fé( o denotes the value of f at £=2-1+ m Ag,
B

t = kAt and we define o = )\At/Ag Moreover, we assume ﬁg is bounded. 1In the

2-th subregion for each >‘n % we define a set g(kk JL) as follows:

r{1,21"'rM b, if KE,JL,O >0 and AE,JL,MLO'
{0,1,°+-,M-1}, if x}g'w <0 and kﬁ,l, <O
K
9(x, 4= ‘{0,1,“.,»4}, i A];,Z,Oio and A w20 (2.2)
| (02,0000, iE A];,Q,O >0 and Ki,g,m < 0.

We suppose that when n, § is fixed, g(>\ JL) is the same for all k. Therefore,
from now on, we use the symbol g(% ) 1nstead of g()\ 5&) For each Ap . (2.1)
4

is approximated by a second order accurate system of difference equations of the

following form

h (m) , hz(m) 1 ,
o gl g
A tE ’ (2.3)
—h (m) Rh n, L, m+h h=h (m) h,n, 3,m “¢,m+h n,%,m

meg ( An&),

where for any m hold the relations
0 < mhy(m) <m+hy(m) <M, max g |, [hz(m)l}f_H,

H being a positive integer,
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k+% k+2 k+% +3 k+% k )
and Rh 0,8 ,m’ h n,%,m and f depend on U?L(,m+j’ Z , Ulﬁz,m+j’ Z" besides g

and t, j satisfying h1 (m) <J < hz(m). According to the consistency, among

k+% k+% , ,
Rh,n,SL,m’ Sh,n,ﬁl ,m exists the relation
hzz ) k+% h2 m) k+%
= S = 0(1). 2.4
h=h, (m) ntom T2 (m) Domm " 29
1
If >\n om > 0 (or < 0) for all m, wusing the implicit second order scheme
oy
for (2.1) 4 k+ +1 H, 01 ked
= 2 +3 k+2 +1
5 H (Uk U]r;ﬂ)J'ZUOm?—“G A Uk
1 *k+§ 1 k+% k+2 k+2
-2 quié (L)]r;+d11(1$-1) _Quomi,luc'lm% &Ukkat“f (2.5)

we can have a system of difference equations in the form (2.3). In (2.5) the

subscripts n and ¢ are omitted, and we use the notation

A = - = _
+Um Um+1 Um’ A—Um Um Um~1 !
1
H fmll 7 Ep + fpgg)-

And the minus sign of # should be adopted if ) > 0 and the plus sign if X < 0.
If A
(2.1)

n,%,0 > 0 and )\n& M < 0, using the explicit second order scheme for

1 1
*k+2 Uk+1 _ *k+2 (_‘l_(1+ OI];TZ) O]HT:-Z Uk . (1+0k+2)(1 —0 k+2 ) Uk

2 m-1
X -0k+2)0k+2 Uk )+t fk+2 , (2.6)
we can obtain a system of difference equations in form (2.3); if )\n 2,0 < 0 and
7 7
)\n WM > 0, using the one-sided second order explicit scheme
7 A0
*k+d  k+1 *k+2 k+% k+2
G U = G - 5 (- [ofE ) 1ok ) U
HloRE ] @ lokE D e T e a- 1K D o)
Atfk+2 , (2.7)

a system in form (2.3) can also be obtained. In (2.6) and (2.7) the subscripts n

and £ are also omitted and in (2.7) the minus sign of ¥ should be chosen if X> 0
*

and the plus sign if A< 0. (Noticing that (2.7) becomes G }.{+2 U'k+1 = G k+2 Uk +

At fk+2 if A= 0, no matter which sign you choose, we know that it is no problem

for the sign of equality to appear in both cases.) In order to guarantee a second

*k+% k+% . ,
order accuracy ;G and Om' are computed by the linear interpolation formula
_ = _ 1 - v
fp =0 % @m-m NEF (m m)fn111
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where k+t At
m ZAg
m' =m - ] _( k+2 ~ k+2) At 14
A m 2hE

and the minus sign of ¥ should be chosen if A> 0 and the plus sign if A< 0.

Consequently, second order accurate systems in form (2.3) are existent. We
have given some schemes, which are in form (2.3) and can be applied to various
cases, in [2] and [3]. For more details, please see [2] and [3]. ;

In order to use scheme (2.3), we have to know Ug,m, Z0 ’ %, and 72 at
the beginning. We use a first order scheme to get U% n and Z% from Ug - and ZO
If the superscripts of G and 0 in (2.5)-(2. 7) are changed to k from k+2, (2.5)-
(2.7) can be applied to this purpose.

Therefore, the numerlcal procedure can be described as follows. At first, in

order to get Uf o ad Z2 from Ug n and ZO the system
7
-,
hzz(m) R v - hg(m) s? w® e lae g
n,q,m &,m¢h 2 h,n, ,m ¢,m+h = 2 n,%,m
hzh1(m) [l iadd ’ h—h1 (m)
SL=1121“'!L1 n=1,2,"°°,N, meg(xn jL)l
S e '
BO(U1,0’ zO , %) =0,
1 1 11 (2.8)
B (0w Uar, 0020 t?) =0, 2=1,2,--+, L1
A
LBL(UL,M' 20 t?) =0
0 0 0 0

should be solved. Here Rg n,q,m S, n depend only on U g,m and Z .
el

h,n,% ,m’ fn,z,
Then for k = 0, %, 1,°+-, T/A t - 1, we solve

»

h, (m) . hz(m) Kol
1
U!]L( z Sh n

Rh ,m+h

k+%
,m+h *At fn,JL ,m’

:5 wl~

£=1,2,00L, n=1,2, N megl Ay o),

p Uk+1 k+1 k+1) -0,
(2.9)
1 1 k+1 k+1
Bm(d’ft'UKL @zt ) =0, &=1,2,7001-0,

+1 k+1 k+1
\BL(UiM, 27, 27 <o,
Let U be a vector whose components are U1,O’ U1,1""’U1,M"“ L0 L 1 “’UL,M
from the top to the bottom and U, be a vector whose components are U , U , U ’
b 1,07 “1,M" 2,0

2 M’ 3 0’ 3 AR LO’ LM from the top to the bottom. R denotes a matrix

whose every row consists of the coefficients on the left hand side of a difference

217

great number of zeros. The rows of matrix S and the components of vector F may

be defined equivalently. Then (2.8) and (2.9) can be rewritten as

1
3022 _§ogo +1§AJG Eo,
11 1 (2.10)
B(UZ, 2%, t?) = 0,
ok gt _ ook gL g6
R (2.11)
B(U]];H' Zk+1, 1y 0,

k =0, 3,°<+, T/At - 1.

Here B(U_, Z, t) = 0 are nonlinear equations which correspond to these nonlinear
boundary conditions in (2.8) or $2.9). Accordlng to their deflnltlons, BO R SO
EO depend on _QO, ZO, to, and Bk+5, Sk+2 Fk+2 depend on [lk+2, k+2 k+2 Uk 7
1 1 1
k=0, 1 5 1,--- /0t - 1, i.e., R = R(UY,20,t), -+, and R¥*F = R(USHZ, 7K°3, tk“%
U, 25, 5,0, k= 0,400, T/ 00 < 1L
Noticing (2.4), we can rewrite (2.3) in the form
hz(m) hz(m)—1

7

k+t k+i k+1
% 2 5Uk - +2 +2
h=h1 (m) Rh,n,g,m q, ,m+h h=hf () Qh,n,z,mA+UJ;,,m+h+ At fanle ; (2.12)
1
h A = _
where  § UJ;,m+h UJ;,m+h U{;,m+h’ A+Uly§,m+h Uk;z,m+h+1 Ulz,rmh’ and
k+% _ hz k+i k+i
Qh,n,SL,m T ’ ).

_’]=h1 (m) jmn,gm - 7j,n,e,m

Therefore (2.10) and (2.11) can also be written in the following form

R6,00 =0 4 00+ 1 st g

1 1 1 (2.13)
B(US, 2%, t%) =0,
and
1 1
5k+2 Gf —Qk+2 A+Ek + AL Ek+2 ,
(2.14)
B(UJ;”, Zk+1’ tk+1) -0 ,
k=0,%,---,T/At - 1.
- PO U BT . .
ere 1 U U - U", Q may be defined in the same way as S is done, and Q, R, S

satisfy the relation
U = RU AU
S RU + Q . (2.15)

It is clear that we can also construct a second order scheme in the following
1 1 1
B)‘T+2 [_)'k+1 - §-}1(+2 gk + AL E1k+2 ,
(2.16)
B(U'E”, Zk+1' tk+1) -0, ‘

kel kel 1
where 31+2, §1+2 and E1k+2 depend on f”, Zk+1, tk+1, f, Zk, tk.

form
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3. BASIC ASSUMPTIONS
Consider the scalar equation

du 9
a—t-+uu,£,t)§§=o, 0<&<tl, O0c<tcr, (3.1

and suppose that it is approximated by difference equations of the following form

h, (m) , h, (m)
k+3  k+1 k+z k
b} Y. 2y = s 2 u (3.2)
h=h1 (m) h,m “m+h h=h1 (m) h,m "m+h ’/
m g g(A)

Oim+h1(m)im+h2(m)iM, nﬁx{lhﬂm)], [hy(m) )} < H,
k=0,1,-
For scheme (3.2), besides the consistency condition, some stability condition

and "well- condltloned" condition should be required. We suppose that the following
"most weak" stability condition and "well-conditioned" condition are satisfied:

(1) The von Neumann condition

1 1
G2 k5o - (K2 (0)" & (g 5 0 (3.3)
holds for any m e g(A), where
1 h, ()
k% 3 i
T3 e) = 1 YE*Z (0,0)eth0
h=h1 (m) 4
1 hZ(m) .
20 = 3 3,00tk
h=h1 (m) !

kz(

1 * 1 * %
and (1"(8))", (s5"%(0))* are conjugate complex mumbers of T 0 52 (e),

k+% k+3 k+3 -
Yh rﬁ(o 0), Sy 2(0 0) being the linear main parts of Yh,m = Yh m(Ag, At) =

1
Yp(mog (eed)at, 02, 46), k7% = K2 (ug, 0ty < s (g, (ked) at, ae , 0.
(2) The 'well-conditioned' condition
k+3 * ki
O 2O Y =) > ey > 0 (3.4)

holds for any m € g(i), <y being a positive constant. For explicit schemes, (3.4)
always holds.

1
(3) If u is Lipschitz continuous with respect to ¢ and t, then vy }}?ﬁ ,
l 7
s];:; are Lipschitz continuous with respect to ¢ and t, i.e.,
4
k+2 Lkt k+% k+%
vy Thymal < cag sy m - Sh,m-11 £ ©AL (3.5)

IYE:’i Yl;:fl | < cat, | ﬁ"; - sﬁfl | < eat
and the differences between Yk+2(0 0); k+2(0 0) and Yﬁji, S];:I%l
satisfy ’
ly k+2(o 0) - yﬁffll < c(bt + AE),
(3.6)

I~

|sk7200,00 ~ sK*E| < eqat « s2),
r

where ¢ is a constant. From now on, =N denotes a constant, and we
use ¢ to express different constants if it is not necessary to give

a specified subscript i.

We define
k+%
™. 1 (22 oy (3.7)
meg( M) h h,m “m+h
lluki|2 : |akl"ae, (3.8)
m=0
i.e., | ]ukl ! is the L2 norm of uk.(In this paper, I Ifi l always means the L2—

norm of f .)
We say that scheme (3.2) possesses Property A if from (3.3)-(3.6) we can
derive the two inequalities:
R N
- c'u§|2A551(>\§l) +tc, 2 X uI];IzAi; (3.9)
meg(Ah)

(ii) L Tki [c50()\}8) - c2|018|(1 - 50(>\]8))]]u]8 |2 AE

+ teg eyl 1 (-8 0811 Page ang | 1517, (3.10)
where
1 X 0 1, Ak <0
k ' 0 ky - "
8,08) = . NI ) :
0 g <0 0, Ay20

Cc is a constant and , is a positive constant. Actually, using 50()\]8) and
5]()\1}\(,1), gl Ak) can be expressed as follows

g0y = (6008), S0k w1, m -8 ()
Therefore if g()xk) is the same for all k, then (>\k), 5 (>\ ) are also the same

for all k. We have used g()x) instead of g(>\ ). Consequently, in what follows,
we use § (>‘O)’ 51(>‘M) instead of ¢ (A ), 61(>\M)

Suppose A= constant > 0. Using scheme (2.5). we can obtain a svetem Ff
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difference equations of form (3.2) approximating (3.1) as follows:

k+1
PR uk+1 L ukJr1 o 4 uk uk uk
m m-1 + oM m-1 _ m m-1 m m-1
2 2 - 2 -0 2 I (3.11 )

m=1,2,°,M.,

Therefore
~ P k
= [ Z((1+O)um+(1_0)um—1)2 1" AE
m=1
_q ] : s, 10 M 45)? s
—[4(1—0) Uy 3 Zum+~————~—uM
m=1
M
1 2 k
+5 (-0 & u . oulfag
m=1
1 2 2 L 2142
r [7((1-5) -(1-02))u, +O"‘m§1 u- o+ Z((1+0)2 - (1—01))11M
M-1
T oy 1 2 2 1 k
+500-0 Jzuy+ 5 u + 3 + Z uo qu)17AE
m=1 m=1
M
1
> lzo(auy +0° T uag, if 0o ¢ 1,
m=1
Ny -

1 2 2 2
Iz ((1—0)2—(02-1))UO+H§; u + 2—1((1 ol - (g% 1)y

1

N DY +M; LT ;l u .u )]kAE
2 2% " L T2 L Yt
1 2 M 2 %
1[5(1-o)u0+2 um] Ag, if 1 <o (3.12)
> m=1
and M
1
Tk+ _ 'I"k =[5 %((1 —g)um + (1 +O)um_1)2
m=1
M
1 2
) m§1 7 (W + oy - (-0 ) i AE
M M1
= 1 -0 - 2y’ ] 2,..2.k
[HZIJ=1 7((1-0)" -(1+0))u + 4m=ZO ((T+0) -(1-0)* )u 1" A
- 2 2.k
© 10 Yo T oyl oe (3.13)

where [....]kmeans that every quantity in [----] has a superscript k. ILet c =
1 1 . .
max { 30(1-d, 3(¢-1),0} , ¢, = min{c®, 1}, noticing 6§ (}) =1 and §,(3,) = 0

in the present case, we can write (3.12) and (3.13) in the form of (3.9) and (3.10)

respectively if 0 < ¢. For scheme (2.5), if A >0, (3.3) always holds and (3.4) is
equivalent to 0 < o . Therefore, scheme (2.5) has Property A if A = constant > 0.
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The following scheme approximating (3.1) with A = constant >0,

uk+1 _ uk _ O(uk _
m

m m (3.14)

k

m_1),
m=1,2,22, M

is also in the form (3.2). In this case

M

- 2 k)?
™ = lup | a2
m=
and if 0 < 0 < 1, we have
M M
1 2
L O T (LI LIS R LY
m=1 m=1
LM M-1 M Mos
=[(1-0) % u;l +0? L u +200-090z wu .- 3 uwlAf
m=1 m=0 m=1 m=1
R M , M-1 ) » M-1 s 2 M 2k
A0-0)" L wro? I W +(1-do(up+2 ¢ usu)- £ u b Ag
m=1 m=0 m=1 m=1

= 10w - oull at.
et c = 0, cz=1, they can bewritten in forms (3.9) and (3.10). For (3.14) the
condition (3.3) is equivalent to 0 < O < 1 and (3.4) always holds. That is, (3.14)
also possesses Property A if A= constant > 0. Actually, many schemes are of
Property A even for the case A= A(§,t). In fact, for several schemes with variable
coefficients, including schemes (2.5), (2.6), (2.7) and some combinations of them,

[31

we have proved that they possess Property A. Some of results are given in

Section 6.
As we have done in Section 2, the boundary conditions can be written in the
following form
B(Ub, Z, t) = 0. (3.15)
Its first variation equation is
5B %
3 (Uyr2) 57 J

We further rewrite it as

G, 90 |

B =0, (3.16)
g

8z |

where

Gy = . (3.17)
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and 1
B | %

B = —22
g9 AU_,2Z) ’ (3.18)
b’ L L+1

IL+1 being an (L + 1) x (L + 1) unit matrix. Clearly GchUb is a 2LN-vector whose

* *
components are (Grl GU)SL,O and (Gn 6U)£,M, n=1,2,°**,N, £=1,2,°°°,L. (Gb cSUb)i
denotes the i-th component of Gb 5Ub, A b is defined as follows: its i-th component

) . *
)\bi is )‘n,Q,O if (GbOUb)i= (G 6U)JZ:0 or )

The set T = { 1,2,°°°,2IN } is divided into IO and I1 in the following way: in

. *
n, oM if (Gb 6Ub)i=(Gn6 U)JL,M'

the case >‘bi = )‘n,IL,O for some i, we say that i belongs to IO if 60( Abi) =

60()&1,2,0) = 0and to I, if §)(),;)= 64(A ) = 1; in the case ), .= or

n,q,0 )‘n,g,M £

)=0, and to I, if

some i, we say that i i =
, y that i belongs to I if §,().) Sqing 1

IQ/IM
61 (xbl) = d](AH,QI,M) =1,
We say the boundary condition (3.15) possesses Property B if for any V, , Y

satisfying
B ( ) = E, (3.19)

the following inequality holds:

2 2
1Y% = vy | <cl 5 Ml v ? + 1 El?2)
s& Ml et Dl bl 1B (3.20)
where ¢ is a constant and Vi is the i-th component of Vb'

In practical problems we usually have such an inequality. From the defini-

tions of 60()\n,JL,O) and 51(A ) we know that if i € IO’ the characteristics

n, L,M

line correspondi = i i
ponding to A An,JL,O or A n,g,M arrives at a boundary. This means

bi
that if 1 € IO , the value of Vi should be obtained from partial differential
equations. Therefore, when all such Vii
be able to give all values at boundaries. That is, the system

are given, the boundary conditions should

V.

B, (;°) =%
(3.21)
Vl()O) - E(O)
should have a solution, where V}go) denotes the vector consisting of all the Vi’ ie
IO and E(O) is a given vector. If (3.21) has a unique solution then we have
lyl2+iEzI1 vps 17 e iezlolvbifz+ E|9. (3.22)

Moreover, if all “‘bi |> a positive constant, then (3.22) can be changed to (3.20)
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>‘bi* = 0 for certain i* and the i*-th column of Bg is a zero-vector,which happens

. in several practical problems, then we will have

2 2 2 2
Y7+ 2 vl < z |vis |+ (BT (3.23)

. s . .k
161i ie IO but i#i
(3.23) can also be changed to (3.20). Therefore, (3.20) holds for many practical

problems.
For the coefficients and the nonhomogeneous terms of differential equations and

difference equations and boundary conditions, we assume that they are Lipschitz
continuous with respect to their arguments. For the exact solution, besides the
Lipschitz continuity in every subregion, we further assume that the truncation error

will really be 0(At®) for second order schemes.

4, EXISTENCE OF SOLUTIONS OF DIFFERENCE EQUATTIONS

In this section, we shall prove that if

(i) (3.9) and (3.22) hold;

(ii) the errors at t = kAt, (k + 1/2)A t are O0(At?);

(iii) the coefficients in difference equations and the functions in boundary
conditions are Lipschitz continuous with respect to their arguments,

then (2.11f has a solution {L_]k” ,Zk+1 }, and the difference between the solution and

the exact solution is 0(At?).
N
Suppose f_“li,%’ be the exact solution and Ub is the equivalent of Ub in the case

of exact solution. Since (2.11) is a second order scheme, we have

.l 1 .l
’.\glﬁz ﬁk-ﬁ _ _g-‘k+2§k + AL %‘—‘k-i-z + 0(bt?)
(4.7)

n
B([“fg”,zk”,tk”) =0, k=0, 1/2,+, T/bt-1,

n o
where R, E, F are almost the same as R, S, F, but arguments U, Z are substituted by
’_L\f_, %l, and 0 (At?®) denotes a vector whose L, norm is of order At®. Noticing (2.15), we

can rewrite the first equation of (4.1) as
1 1 Akl A n 1 1
Bk+2 rﬁkﬂ - (Bk+2‘§k+2 Ek+1+_§_k+2[_1k + At NEJ(+2 + 0(0t?)
1 1 1 Vgl A
- §k+2gk + At E_'k+2 N (5k+2 B .le+2) [_)_k+1
1 1 1 1 Vel
g (k) - (T - g9 O - A @R E) 4 oee)
1 1 1 1
_ _s.k+2d< At Ek+2 . (§k+2 _ +2) 5}_jk
1 1 1 1 1
(@Y PTG s @ - FR) o).
o -
According to the given condition, the L2 norms of the errors N and
: k
gt _ Yok i

-2
zk+% _ f\2k+1§

2 IbU?@

are 0(At?), so their L  norms are 0(At3/2). Moreover, in each row
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has only several arguments. Therefore .,
k4 Vel N 1 1 o\ 1
ITR™2R00* - (2 - gty gk gk gk gy
1 1
SOEETE ¥R w0t is o(at?).
Consequently, (4.1) can be written in the form
1 1
5k+2 E—}k+1 _ §k+2 Ek + At Ek+% + 0(at?),
n N
B(UJSHI el kel (4.2)
Consider the following system
AX) = F (4.3)

U Bk+% u
2(_ = 7 ’ é(é) =

Here the num]1oers of components of B, Ub’ Z are fixed, but the number of components
of U is O(Tt_)' Also, we suppose every element of

where

B . .
. a—?m is Lipschitz contin -
uous with respect to its arguments. From (4.2) we knowb that if

1 1
§k+2 [_’k £ At Ek+2 . O(Atz)

F = Fx =
- - 0

’\[’Jk+1

(4.3) has a solution X* = ,Ek” - Now we shall prove that if | [F-F*| | < cAt:;:Jr 8

7

§>0and At is small enough, then (4.3) has a solution which satisfies

X -xx <227 @] ||F - FY | (4.4)

and the solution of (4,3) satisfying (4.4) is unique, where A' is the Jacobian of
A with respect to X. B

First, we would like to point out that because the numbers of components of
B, U, Z i 3B i i i
v Uy 2 are fixed and every element of m—)- 1s Lipschitz continuous with

respect to its arguments, we have

A' - 1
TaE) -2 @] <ellxy - %00 . (4.5)
Consider the simplified Newton iteration with XO =x*
+1 -1
o a0 (- acdy), (4.6)
k=0,1,°""".

From (4.6) we have

1 - '
£ = ' ) ) - A’ o) (e - B

n

a! (X*) (A" (X%) - A" (x* + £(X° - X))y (K- x%)

.1
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Therefore, if (4.4) holds for ék and At is small enough, then (4.4) holds also for

g‘”. In fact, when (4.4) holds for _)gk, we have
1% - x| < ats.

Therefore, letting At be small enough, from (4.5) we obtain

1
1A"(xX%) - A (X + £ (X - X9)) ||« ——— (4.8)
el |
and
I - xS <2 a7 @) [|E - B
can be derived from (4.7). Noting
g - xx < TR @] e -F
and using the inductive method, we know (4.4) holds for all Xk
From (4.6) we have
X2 K T ) e - akth)
AT e - At e a1,
0< &<,
Since both gk” and f‘ satisfy (4.4), we can choose a small At such that
2t ey EHN L —— (4.9)

-1
22" @9 |
Therefore we have

|12 T ] T 2

and the convergence of the iteration (4.6) can be obtained immediately.

Suppose both )_(1 and 2(_2 are solutions of (4.3) and satisfy (4.4). Noting that

in this case
1

AU(XF)-A(X, +E(X, - X)) ||,
[ 1 2~ & H 2 2 ] |

we can have

127 0 20X || <[] 00 B (692" (54 E (X007 ] ] |27 ()|
) [la o) |
T-la ThEO ] 1A ER) A (K r € (X=X |

=T
<22
Moreover, there is the inequality
=1
g%l < e 8 - D TR - A ] -
Therefore, from A(X;) = A(X,) = F we can obtain X; = X,, i.e., (4.3) have only

one solution which satisfies (4.4).
Since both (4.2) and (2.11) are in the form (4.3) and the difference between
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the L2 norm of the matrix

1
Py ; B_k+2 U

a7l = -

NIy ) ,
9(U,z) B(Ub,Z,tk+1 Ez“ﬁcﬂl Z=rik+1

can be shown,our conclusion is proved.

Let us consider the system
1 1
Ek+2 g_kﬂ - §k+2 Ek

'}gk” Uk+1
Y ws (e ) = Ef
a bl Z
where
afﬁkﬂ aB(Ub,Z,t)

= ]
3 (U, ,Z) a(Ub,Z) U = Uk+1, 7 :qék-ﬂ £ = tk”.

14

It is easy to know that if when a scheme is used to

Ju Ju
B_E"LKB_)E:O’ 0<x<1,
we get a system in the form
5 k% K kg K
h Yh,m Ymsh T2 Sh,m Ymsh f
h
m €& g(i),
then when the same scheme is used to
* 0U ouU
GnTtJr)‘nGnag 0, n=1,2,°°°,N,

for each >\n 2 the system of difference equations
4

Rk+% K+1 k+%

=2
h “h,n,g,m % ,m+h h sh,n,gL,m Uif,m+h’

meg(}\n,k)

can be rewritten in the form

k+% k+1 +1
rzl Cy Yh,n,y,m “n,o,m+h + 0(at) Uk m+h B
_ k+% k
N }f (sh,n,ﬁl,m un,sz,m+h * O(At)UJ;v m+h) ’

mgg( An,g)'

Y]
where u, is the n-th component of GU, each 0(At) is an N x N matrix and its
components are quantites of order A t.
Define

m/M .
ey if SO(An,Q) =1 and 61()\1,1,2) =0,

1-m/M . N a

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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b =
n,%,m c5 if 0, ) =0 amd 8,(} ) =0,
1, if 60”n,z) =1 and 50 ) =1, (4.15)

where C3 is a constant greater than 1. Clearly, on boundaries, if i€ IO , the

corresponding bn,)@v,m = Cy and if 1€.I1, bn,SL,m =1.

Multiplying (4.14) by bn ¢,

and noticing b N, m/bn 4,mh =1 + 0(pt),

defining

A

u = b u
n,Q,m n,%,m n, o ,m

we obtain K+l ,{J k1

+1
h,n,q,m n,g,m+h + 004t Uk m+h -

ro(y
h

k+2 {}k

(hn,g,m n, ¢,m+h

+ O(At)Gkk ), (4.16)

m+h
meg()\nll),

]

where U denotes the vector (u1 R u oo, uN)

Through straightforward derivation, we have

+1 k+2 ~K+1 +1 2
‘Iﬁ,ﬂ, ﬂmEg(Z ) ( ﬁ h,n,q ,m Un 9 m+h” O(At)Uk m+h
M,
k+% ~k+1 “k+1,, 2
> z VA pE- c At f| UF
T meg(r, ) (h "hyn,g,m un,z,m+h) &-c H—Q I !
=,
M ~
where | UQ N L |u, IZAgand c is a constant, |U | being the Euclidean
" =0 vt Lrm
norm of USL n Therefore, when (3.9) holds, we have
;M.

+1 Ak+1 ~k+1 z
T‘r(l,szi“ctu 2,0 “ag8, () n,8,00 7 My, gl 2881 O, )

0
. ~ 2
- c At llUk;Z'1ll +c, I |iik+1 leg
h Z meg(nh_ ) mam ’
= n,Q
Consequently,
+1
Tk+1=’§ Dol aB1 (U]g )|
29 = U Z) A
alf ™ 5 oo nt 50 1) gk :
N L
k+1z ~k+1 2
>2-c I | AE+Cy 3 3 z u | ag
i€l "o | n<1 =1 meg(A g om

2

+ c§ [E’zAg— c At quk” Il

c
2 ak+1 k+1
2o GO e 2T %)
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[e]

2 k+1)2 k+1]2
-(c+ =) 2 u, . + |z )AE
2 i€I1 ’ bi ‘ ‘ l
2
c.c
273 k+1, 2 “k+1p)2
52 n it ses 2| E|2 e - ot [| T2,
1610
Here the following relations are used:
~ 2 N L M ~ 2
( [ | B T R s
n=1 =1 m=0 0% ,m
N L
- oz 18] 1%ae
- P : nl Im
n=1 2=1 meég( )\n,Q,)
Ak+1, 2
) + It 178, (4.17)
ie I1
L
~K+1 2 Ak+1 2
I, % ju AE 2T .
el =1 mEgn ) np | i€r P | aer
= n,Q 0
~k+1, 2 2 k+1, 2
z ] o=c 5 |u ,
iGIO ubl 3 iGIO ubll
~k+1) 2 k+1 |2
Do [ Lol |
i€eT ieI
\ 1 1
The second equation of (4.11) can be transformed into
A +1 Y k+1
5! (81; A Y -
3 (Ub,z) IL+1 Zk+1 ’

N . . - \
where Gb is a matrix similar to Gb defined by (3.17), but Ub should be replaced

by ﬁb. Therefore it has the form of (3.19) and the following inequality in the
form (3.22) holds: ‘

T M I S P T
+ . <c(z Joo+ E|) . (4.18)
i€r, i ier i
0

Consequently, noticing c, > 0, we can choose such a 3 that

AN C_z( llﬁk”liz IZk+1’2 A ki) 2

a0 3 u + AE) -c bt U

©2 g1 12 k+1, 2
2 GG+ 12 s ). (4.19)

Here suppose At be small enough. It is clear that

E
+1 - -
a9 “Il B Il z
H k] gk '
9B b
A3 (U, .Z) ka1
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where B is a diagonal matrix whose components are bn oy n=1,2,°°<N, 8=1,2,--,L,
meg( X SL) and a certain number of c3., From (4.19) we can have
14

ul] 2 s
[;] . 18N 12 e

< sup

I
127p = swp
12

I U -2 +1
g1 I A
[Z ] = iu
4c
£ 4 2 = C3 o (4.20)
c,ll Bl 2

This means we complete our proof.

It is not difficult to show the following results.

(1) If the conditions described at the beginning of this section hold, the
errors of approximate solution at t=(k+1+6 )At, &=0, 1/2,°+-,m/2, m being a finite
integer, will be 0(At?).

(2) 1If the term 0(At®) in (4.1) is changed to 0(At?), the conclusion is still

1
2

U
correct. Therefore there exists a solution ( Z% ) of (2.10) satisfying the
inequality
1 v
2 _ 2
o= ool <at?, (4.21)
22 - 2z

where ¢ is a certain constant.

(3) For first order schemes, a similar conclusion is correct. The only
difference is that the errors at the 'given' level(s) and at the 'unknown' level
are 0(A t).

(4) For scheme (2.16), if conditions (i) and (iii) are fulfilled and

(ii') the error at t = kAt is 0(At?),

Zk+1} , and the difference between

then the system (2.16) has a soluton { g‘k+1 ;
{_IJ_:l("'1,Zk+1 } and the exact solution {Q‘kﬂ ,%k”} is 0(At3/2).

5. _PROOF OF CONVERGENCE

Ny
As in Section 4, {g, Z} denotes the exact solution and suppose in each
N non
subregion { U, z} is quite smooth so that { U, Z} satisfy (4.1). By means of

(2.15), (4.1) can be rewritten as

1 1 1 1
,bgk*'z 8 ’_(\ik =,\Qk+2 A, ﬂk + At ikb + O}1{+2 (a%*),

(5.1)
k+1

Tk k4
B(UJ]; , R
N
where 25_ is equivalent to Q, i.e., substituting ﬁ, Z for U, Z in Q, we can obtain

) =0, k=0, 1/2,1,°**,T/at-1,
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k+2 K+ +1,-1  _k+& k+d v -1
1 1 1 2 . 2
(BB - - @ E s where X @, g = SR T
Y 7
1 1 1 n 0
_ 2k+2 A+(_Uk—§() . (Q_k+2 _N9k+2) A+ L_]k G‘I,O
1 kel 1 °
e atEESF) L O (e, (5.2) "
1,M
N .
Uk+1 ’“k+1 G = .. (5.4)
- Lo, k-0, 1, &0
7 7 7 7
. a(Ub,Z) Zk+1 _ %kﬂ .
Y
k+1
k1 +1 0 Vk+1, . 3B , +% 0 GL,M
where Ub-UJ; + & (U]g - U]]; ) in 3 (Ub'z) , 0 <& < 1. Since each U}Z,m or UJSZ,m L ..
L1 k+1 .
appears only 1n several rows of Rk 2 and each row of Rk 2 has only several nonzero . ; and —Bg is defined by VkH Vk+1
components, (R ARk+2 ) 56‘]( has the following form gkt (—— ) = k+1 ( b ) (5.5)
’ k+1 g wk+1 77 :
+3 +3 Vk+d . -9 Y T
omt)@ 2 _T) L ooxat) (292 - 2 - -
- -1 G
ry
s o(t) (U - %) + oxae) (2F - H). : o Lkt rd;” 10 o, 0
B denoting a—“"—“’(U 7) w, = 1,M . Rewriting
Here 0(At) denotes a matrix in each row or each column of which there are only g b’ IL+’I ! Gb °.
ey
several non-zero components of order At. Therefore, the L2 norm of 0(pt) is less GL 0
AN
than cAt, c being a constant. O0*(At) denotes a matrix whose number of colums is 0 GL M
P 14
L + 1 and whose each component is a quantity of order At. Consequently, the L2 L B
1 kel nked the first equation of (5.3) as
norm of 0*(At) is less than cAt?, c being a constant. Obviously, (Q 2 Y2 8"
3 _pkes PV k“z F L0 e)E 4 ox(ar)TktE
and At(gk 2 - E‘k 2) have the same form. Therefore, the first part of (5.2) can - = A
. . 1 1
be written in the form ’ - (§1;+2 . O(At))vk . 0*(At)Yk . 011(+2(At3) (5.6)
kg, K+l Vk+l, +%  vk+d . k+t  k+d ‘
BT ST < o0e) (@7 - TR 4 o) (27 - 2 ; fork=1z,%,---,andcombining (5.3) withk = 5 and (5.6) with k = J + %, 3
1 1 n :
Rk+2 (L_lk - f\[_jk) + _Qk+2 A+(_U_k - gk) . being an integer, then we have the final form of the error system
1 5 +1 _ Lk k 3
e 00et) (0 - B + vt (2% - ¥y 011"‘2(&3). B! - g + okt (5.7)
o o k =0,1,¢-, T/At - 1,
Let V be a vector whose components are & (U U ), & (U U, ), e
- 1,0°7°1,0 1,077 re,M T, 1, ! where F -
k+1
'\, ,\, w R 0 0(at) 0% (At)
L O(UL 0 L 0), L M(UL o L M) from the top to the bottom, V, be a vector a k+3/2
"' B 0 0
whose components are &1 0 1,0— 1,0)’G1,M(U -U, M GL 0 L 0 L 0) and _le _ -9 Kol
2
8 (U Wy ), and Y = Z- Z .Noticing (2.15), the error system can further be 0 0 R g 0
L,M "L,M L,M ko1
. i 0 0 B
rewritten as ) =g i
sl \,]{‘F% * k+3 k1 -
VT =000V 4+ 00 (A0 Y ; s h0eat) 0% (At) 0 0
-9 (5.8)
+(sk+2+o Be)VE + ox(t) T +0k+2(At ), . ok _ 0 0 0 0
= : 1
Vel 00 t) 0%(0t) &2 onn oxse
P (5.3) 1 0 0 0 0 .
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%
“r
[NEY

L
-
. o1 (at%)
07 (At?) =
k+§ 3
N 0.l (At?) .
Therefore = J

E{H - ("Bk)—1 js_kﬂk . (\Bk)—1 Ok(Ata)

) ~Tek BTy 14 -
=(R")~ s (R sk- 1wk ! (R ) 1sk(Rk 1) 1(At3)
. (é")”o"(Atﬂ
ko, k Ko ey ag
s @)W T 1 @)Y Totee).
j=0 i=0 J=i+1
Consequently, if
~5 g
IEHY™) <c (5.9)
20
1 ®)7TEN <q for 0 < J At <3, At < T, (5.10)
3=3,
then
1
Il wk+ | < c4(At2 + | jgo“ ), for any (k+1)At < T, 1
- - U - U? :
where Cy is a certain constant. In Section 4 we pointed out “ (—'l E,) H =0(At?),
ZZ
0 .
so || W || = 0(At?). Therefore, noting the boundedness of “ é’h 1” , we can obtain
immediately
N
U-U k+l
I (z y )l < cat?, k=0, L,ce-, T/pt - 1, (5.11)

where ¢ is a constant.
That is, if the systems for ﬂkﬂ

Rt - gk, k= 0,1, (5.12)
are "well-conditioned" and the procedure (5.12) is stable, which means that (5.9)
and (5.10) hold respectively, the approximate solution {U,2} obtained from (2.10)-
(2.11) converges to the exact solution { ,ﬁ, E} .
In what follows, we shall discuss the stability of the procedure (5.12).
If we can find an invertible matrix B such that for the procedure (5.12)

1B S A TR ™ TERP VT wk“ (5.13)

and

if B is a diagonal matrix whose diagonal element is b
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max { ||_1§-§k|| Lol (_B_ﬁ_k)JHz} <c (5.14)

then we obtain
BRI < ERTE  can ) W)
< (1 +c? at)|| BRS 1Wkllz

k+1-1 s I

< (1 + c® AL) [| BR™ W |]2
2 .
iec (k+1-1) At “ BRl -1 1Hz
2 .
< o (k+1-1)At c“ _Vl ”2
Therefrore
1 |2 2 i .
w7 < ome® Bor=DAt iyt 2
Noticing Kk
won o @) P
j=i
we have

k s . 2 .
|| It (Rj)_1 gj HZ PRNER (k+1-1)At

3=

Moreoever, we can obtain (5.9) from (5.14) if B is invertible. Therefore, the
proof of stability can be reduced to finding an invertible B such that (5.13) and
(5.14) hold.

In Section 4, we point out that (4.13) can be rewritten in the form (4.16).
Similarly, every equation in (5.12) which corresponds to some difference equation,

after multiplying by a bn 2,m defined in (4.15), can be written in the following
14

form
k+1 -k+3/2 =k+3/2 “k+1 * (A vkt
h o h,n,q,m Vn,SL,m+h * O(At)v%!v{,mdl * O(At)vﬁll(,mm) + 0FER)Y
_ k+1 —k+% okt « k+%
=% (&t T e * 0t) vf;,mh )+ 0%(at)Y<H2, (5.15)
which is in the form (5.6) or
k+2 —k+‘l +1
& (nyny oy Vn, g ,men + 0020) Vksz,m h
_ k+2 S S k4%
- 15( h,n, ,m n 2 ,m+h * O(At)V}J{L,mm + 0(4t) V};,m+h)
1
£ 0%(At) ¥+ ox(at) YEYZ, (5.16)

which is in the form (5.3).

Here Vn,JL . = bn,;@,m Vn,gl,m’ Vn, ¢m being the n-th component of
’ v Y _ - _ _ T
V)Q,m = G,Q,m(UK,m - UQ/Im)’ and Vg,m —-(V1 8 ,m’ VZ,JL et VN,JL ,m) . Therefore,

when the correspondin
n,q,m PO d

equation is a difference equation related to >\n at &= 2+ mAg or is 3 when the
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corresponding equation is a boundary condition, then in
g’;k ﬂk+1 - Esik ﬂk

every difference equation has the form (5.15) or (5.16).

Through straightforward derivation, we have

‘T'k+3/2 = 5 (x ( k+1 ‘—’k+3/2 +0(At)\1k+3/2 + 0(y t)vk+1

n4 m(g(xn 2) h Yh,n,Q,m n,q ,m+h ,m+h +h)
7

+ 0*(At)Yk+1)ZA€

5 k+1 k+3/2 . =k+3/2 2 =K+1
2 (z Yh,n,l,mvn,l,m+h) Ag CAt” y‘; ” - CAt” —\—;yf ”2

“meg(X, ) h
2
- cng YR (5.17)
and
+1 k+% —k+1 k+1 2
by 5 o(zekrz 0BT )y,
n, % meg(A 52,) h h,n,%,m 'n,{,m+h £ ,m+h €
1 _ 2 =

> 5 (5 y k+3 Vk+1 ) AE - cit ”vk+1|l2 (5.18)

meg()\nz) h hn,l,m n, £,m+h -9 ’

_ M _ 2 L
where || ¥ ||? =m—zo IVQImIZA‘E' Y] 120 ]yzlz and ¢ is a constant.

Therefore, when (3.9) holds,we have

+3/2 - k+3/2 k+3/2, 2
%32, 31 02800, 1 ) = el R T, Gy, ot T2
- cit || fgn”z —cAElYk+1 I* + c z ‘V];Jrz/ril AE

rXr
’“‘ilmn,sz)
K+ k+1 —k+1 2 k1,2
K 2 el ol aesy Oy, e 1T 1T aeg 0y -ene 1| BT
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From the definition of I}\Qk we know
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2 _ 2
where || y]l = I 22“ . Here some relations similar to (4.17) are used.

2
Because (3.22) holds and S, is positive, we can choose such a c5 that

el

1

c . .
er=2)(s MLZ gD
2 . bi
i€l .
1 5|
ccg - . % )
2 J 2 J :
+ z V™ +c2 1B (3 ) >0,
2 iEIO bi 3 g Y
j=k+1, k+3/2.
c

Consequently, if cAt < Z% , then noting 3 > 1, we have

c, k+3/2

A 1, 2 2 = 2 ] 2
NBRw )" > = 5 (@7 e )
j=k+1
C
> e,
that is 2
"k -1 4
[l (%)™ <3,

The boundedness of ]]@kn 2 is obvious. Therefore we have proved (5.14) holds.
Clearly, noticing (5.15) and (5.16), we can obtain the following inequalities

’f‘k+3/2 and Tk+1 :
n,JL n, Q.

=k+3/2 _ k+1 -k+3/2 =k+3/2 =k+1
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e, ;)
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= D (spry OURITTE )+ et ) g (5.19)
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Therefore when (3.10) holds, from (5.17)-(5.20) we have
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When (3.20) holds and E = 0 we can choose such a constant C3 that

Je J2 2 At
c Prc 5 |vpil® - CSC3%F I
K ier, >t 2308 s exy
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Consequently, we have derived

BRI
cat(N R+ 1T
ceciat W0,

that is, we have proved that (5.13) holds. (5.13) and (5.74) hold, sg (5.12) is
stable. Consequently, (5.11) holds, which means ( g— ) converges to ( ,g ) with a

convergence rate of order AtZ®.

Finally, we would like to point out that for scheme (2.16), the same result
can be obtained. That is, if the scheme (2.16) has Property A, the boundary
condition has Property B, and the solution in every subregion has certain smoothness,

Uk+1

then there exists a solution ( K1 ) of (2.16) which satisfies
Z

Ek+’l _ f—tik+1

0Ty e Ml cedt?, for (k + 1)t < T
7 Z

6. SOME DISCUSSION ON PROPERTY A

In Section 3, we point out that schemes (2.5) and (3.14) possess Property A for
the case of constant coefficients. Indeed, this fact is still true for the case of
variable coefficients and many schemes are of Property A. In this section, we shall
prove schemes (2.5) and (2.6) possess pProperty A for the case of variable coeffici-
ents.

First we give two Lemmas

H,(4) Hy(2)

T (- * = ix 0= 2 (- . '
Lemma 1 IfJL (-1) di(e)dg(e) 0, then the matrix Q= R( 1) D‘ﬁLD}L is

3

a pseudo-null matrix, i.e., the sums of the elements on every diagonal line of the

matrix are all equal to zero, where H3(JL) is equal to either 0 or 1,
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2 iho
d,(8) =2 4, hel , D= (d
he,

CH

5&,}11 ’ dQ,H1+1 reece 2

and the symbol "*" represents conjugate transposition for vectors and conjugation
for scalar quantities.

Proof. Because of

H
Ha(g) “2 ) Hy .
ho | * ho
2D g, e g, @)
% h=H, ' h=H,

for any h, we have
Hy(2)

(-1) L ax

. d .. =0,
3 L,3 T 3+h

tsding}

where H = HZ—H1 , and j in summation formula runs over all the values satisfying both

Hij+h_<_H2andH1ijiH.

1 2

On the other hand

H,(2)
3 %
Q=121 (-1) Dy D
2 L7

~ * .
« a ., a4 cdl o a ,
%ou, G G gy m ny

H3 L) * * *

=2 (1) dQ,,H1+1dJL,H1’ dJL,H1+1dJZ,H1+1"“’ dSL,H1+1 4 u

* * *
d d ooy, @ d
I JL,HZdQ ! JL,Hdez #1770 Sy B H,

and the sum of elements on the h-th diagonal line just is 3 (-1) rd .da . h
) 3 L3 L,3+0,

where the h-th diagonal line denotes the main diagonal line if h=0, it denotes the
h-th upper-diagonal line if h » 0, and it represents the ]h |-th lower-diagonal line
if h < 0. Therefore, the conclusion is proved.

Lemma 2 If d}(0) d,(6)-d3(8) ,(0) > 0, then the matrix DD, - DD, can be

represented by a sum of one nonnegative definite matrix Z and one pseudo-null
matrix Q.
*
Proof. Because of d1(6)d1(9)—d;(9)d2(6) > (), one can find a c¢( 8) =

i)

. * -'
2 cpet™ % such that d[(6)d, (6)-d5(6)d,(9) = c*(6)c(e)  (The Feler Riesz Theorem).
h=H,
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Hence, we know from Lemma 1 that Q = D1 *D1 —D;Dz—c*c is a pseudo-null matrix, where

«+,C. ). Obviously C*C is a nonnegative definite matrix. Therefore,

C=ley r O 41, H,

the conclusion of thi§ lemma is true.
From Lemma 2, it can be easily seen that the conditions (3.3) and (3.4) are
closely related to (3.10) and (3.9) respectively.

In fact, according to the definition of ‘1J< and noting (3.2), we have
4 Hy
<+ (

= X

. k+t k+1 |2
meg(r) h=H,

Yh,m um+h) Ag

Hy

= 3 (Z s
meg(n) h=H "

¢ -z

_meg(k)

k+% k
Ynth

) %A

(s*su, WX ag + 0(s &) || FI° (6.1)

meg(r) h

z (R*RU, U)E AE+O(AE) ||uk||2
L meég(A)

When deducing (6.1), we use the conditions (3.5) and (3.6), assume At/Ag to be
bounded and adopt the following symbols

rRk = ( Yk k Y K )|

m H1,m, H1+1,m, H2,m AE= pt = 0,

bI}I{l = (S}P{I m’ S}Ifl +1 m’""sl}; m)l

17 17 27 AE=At =0 ,

ﬁ H+1 H+1

(U = T D@ g g e )

i=1 =1 ’ 1 "
a; 5 being the element located on the i-th row and the
1
‘j -th column of A.

From Lemma 2, it follows that if the conditions (3.4) and (3.3) are satisfied,
then there exist certain nonnegative definite matrices Z, Z and certain pseudo -
null matrices Q, Q such that

*. 2 = =
(R'RU, U) - c, lum[ =(Z U, u) + QU ),

((R*R - S"‘S)U,U)m = (2 U,U)m + (Q U, U)m .

Therefore, we have )
™5 e, 2 u]n{\l + I (Q u,u)
meg(A) meg(A)

k
m

108

—0(ag) [N ‘ (6.2)
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and

Tk+1_Tk <- b

2
© U,U)ﬁA&- 0ag) Il &I, (6.3)
meg(r)

From the property of pseudo-null matrices, we know that if every element of Q and

Q satisfies the Lipschitz condition as £ varies, then in the above inequality

h @y, U); and - 3 (Qu, U)]r;
méeg()) meg(z)
M X,

may be replaced by sums of 0(A&) ¥ [um| and certain quadratic forms of u]; on
m=0

points near the boundaries. Therefore, (6.2) and (6.3) are respectively similar
to (3.9) and (3.10). Consequently, it is quite common for a scheme to possess
Property A.
We now prove that scheme (2.5) possesses Property A for the problem
%% + MED) gg =0,
AEE) > e>0, 0 <E <1, (6.4)

For (6.4), scheme (2.5) is in the form

k+%  k+1 ked k41 kel k k+3 k _
,mn-1"Y0,m T 5.1, n%me1t S0, 7 m=1,2,000 1, (6.5)
where
k+z _ 11 k+%
Yam 27 ZMOnp1 o

k+% a1 ok+%
Am T 2% ML,
k+% _ 1 1 k+%
So,m T T 2%

For this type of scheme, the condition(3.4) is in the form

6

*
[§] = - / — in? 2
YOYO) =1 - 4y, (1 Yo) sin® 5> ¢

. 0, (6.6)

where Yo denotes YO(O , 0). Moreover Y*(G)Y( 0) can be further rewritten as

. 0
Y¥ o)yl = o + (a+ pel®)* (a + pel),
where 1 <4
¢ =min{ 5=, 51,
/1—c,]' - 1/(2y0~1) - c1'
a= 5 ,
/1—01' + v (2y0—1)2 - q
b = >

Consequently, according to Lemma 1, the matrix

|
i
|
|
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_ 0 0
QERR-Co o) =5
a
is a pseudo-null matrix, where ZZ= (b) (a b). Actually,
2 2
) (1 - YO) - a 0
Q2 =
2 ] 2
0 Yo~ S - b .
¢
Moreover, when (6.6) holds, we have (2\/0—1)2 - c1' i—Z" > 0, which guarantees that

every element of (_22 satisfies the Lipschitz condition with respect to & . Therefore,

since Z2 is nonnegative definite, we have the following inequality

M 2 M 2 Mo 2
T= 1 (R*RU,U) AE+0E) [ ull > o I fu ["age T (QU,0) pE-0(a8)| ul|
m=1 m=1 m=1

M F 2
2ep I luglaee ((oyg)-a™); Jugl s

+ (Y2 - e =Y, ol ®ag- 0ag ) fluyl?

. 2 la 1208 _ opey |l uil”
2 T ]umIAﬁ-cuol - 0Ag) lfull , (6.7)
m=1
2
whereczzmin{c%, (Yé-bz)M}, c>!((1—y0) —512)1 .
Noting
2
ib—:zxa%[/'1 . SUB
1 ] Ll
ac1 1—01 (2YO~1) -C4
2
= _b]/ <0 ’
] N 2 _ 1
M —cp (27p-1) c
2 2
(Y —Db%) =0,

and c1' > 0, we know (YS - b?%) > 0. Therefore (6.7) can be written in form (3.9).

M

For scheme (6.5), the condition (3.3) is

*
v (8)Y(B)- s%(8)s(8)= 4( 5 (1 - 50)- Yo(1- Y ))sin® § > 0, (6.8)
where S denotes sO(O,O). Since 4 sin? % = ( 1—ele)* (1—ele),according to Lemma 1,
the matrix
(1 =Y)? Yl = %) (1 - s9)° so(1 - )
= (1 -v.)? 2 B s. (1 - s,.) s?
Yo'l' = Yo Y0 0 0 0
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1 -1
~(sg(1 = sg) =Y o1 =¥ (L, )
is a pseudo-null matrix. Actually
So - Yo 0
0., =
2 0 Yo~ 5o

1 -1
Clearly, if (6.8) is valid, (50(1—50) —\{0(1 —YO)) ( 1 1 ) is nonnegative

definite. Therefore, we have

M M
I ((S*S - R*R)U, U)_AL < — T (Q,U, U) AE
m=1 ! m m=1 2 m

2 2
<01y = sglglugl A8 - (v = sp)y fay | 788+ 0@e) Il wll”,

from which and noticing YO - Sy =U0, we can obtain the following inequality in
form (3.10):

+1 k2 k2 k12
- o _
T <o luslag - o [ Pag 4 oqag) 1WF 1.
In what follows, we prove that scheme (2.6) possesses Property A when it is
applied to

2, nEn $E -0,

A(0,8) > 0, A(1,t) <0, 0<E < 1. (6.9)

In this case, the difference equations are

k+1 _ _ k+F k k+z k k+z k
Un =S4 ,m’ um—11L sO,m’ U *+ S1,m’ Unet 7 (6.10)

m=1,2,°°°, M-1 ,
where

s 4= 3 (+0)o, s=(1+0)(1-9, s,= - 5 (1-0) 0,

For explicit schemes, (3.9) always holds. Therefore we only need to prove (3.10)

is satisfied. Now condition (3.3) is

v¥(8)¥(8) - s*(0)s(6) = 4(1-090? sin® £+ >o. (6.11)
Since sin4 —29 = 1-6— (e_ie -2+ ei 6)* (e—ie -2 + ei 6), acc<.3rding to Lemma 1,
the matrix
I 0 0 o0 sf1 S_1Sp s 45,
0, = 0 1 0 - SoS_1 sS SS4 - 23

-0 0 0 S1S_q 895, s;'
] —siT -a -s_45, + 2a 0

= -5,S; + 2a 1- SS - 4da -5,S;+ 2a
L 0 =S5, + 28 —si - a
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is a pseudo-null matrix, where

1
7, = a [_f] 1 -2 1,

a=-l—(1 —(;2)02

Because Z3 is a nonnegative definite matrix when (6.11) holds and because Q3 is

Lipschitz continuous with respect to £, we have
M-1 M-1

I ((S*S - R*R)U, U)mAE <=z (03U, U)mAE
m=1 m=1
2
<(QUU), 8g + (U0, b8+ 0(aE) Tull” (6.12)
where »52 +a s .S, - 2a ] u
-1 -170 ( 0 )
- 7
(QU, Ug = (uy, uy) uy
2
SpS_1 2a S5, *+ 89 - T+ Sa- 0
M .2 2 T
Sy + s0 -1 + 5a S_45g ~ 2a w,
(QU,U)yy=(uy_gq ) . oy )
_5_150 - 2a s1 + a Im
Since s? +a s .s.-2a ’(1 +g)o2 (1 - 0%)o
- -1%0
_1
-2
2 2
sos_1~2a s;1+so—1+5a 0 \.(1; -6d¢o g2 (o-1) 0
(140)% (0-1) (1-02)o 31 +0) 0
1 -0%0 0%(0 -1 0
| ( ) ( )_j . K 0 0

and the first matrix on the right hand side of the last sign of equality is nonposi-
tive definite, it follows that
1 2
_ o
(Q U, Uy <— ( 1+ O)!uol .
Similarly, we can obtain
1
(Qu, U)Mi—2 (1 +oM) IuMIZ .
Therefore from (6.12) we can get (3.10), which means that scheme (2.6) possesses

Property A when it is applied to (6.9).
Indeed, many schemes have Property A. For more results, the reader is referred

to book [3].
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