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Theorem 6.2 If the conditions (1)—(5) hold, then the process of
computing ui™, u™ of (5.14)’ for m=1, 2, -« M successively, and the
process of computing I, for m= 1 —1
(5.13) are stable.

In order to prove this theorem, we need #o notice only the following
fact. The relation (5.14)

, M—2, <o) 0 Successively by using

~ ~
Q5D Upos= i@+

can be obtained from the relation (6.4)', the equations (6.1b) with m=0
and (5.11), i.e., from

+1 1
{;&6’" DU+ ™D Uy = D,

PO, 0+ v{" O Uy = pla+d), (6.4)
GO U=Fp, (8.1b)
w” U= i, (6.11)
Hence, there is an invertible mMatrix o,y such that
/'Z(()O,) -1 0
M(()m-m_ ,u,ﬁ’”‘“l) @Tg» 0 — %Mi/’;gwi)y
g),gm‘i-l) ?}(()m+1)

~(0 -1 )
e i

1 ralQ) 0 ~
ﬁ&(m+1) -,ué’”* ) Gg ) Fg ) — @m+i§54(m+1)o

V:(lm+1) g(m+1)

In order to distinguish p™, 2™ in the two prooedures, we shall cha
po™, ™ in (8.11) and (8.14)" into 5™, g™,

By using the above fact, this theorem can be proved, but o save
space we shall not give the proof here.
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Appendix 1

Stability of Difference Schemes for Pure-Initial-Value Problems
with Variable Coefficients?

Introduction

Lax et al.™-1 and Kreiss®™ have discussed the stability of difference
schemes for pure-initial-value problems with variable coefficients, and
have developed some theorems. However, concerning this subject, there
still remain problems to be solved.

This paper discusses the stability of difference schemes for hyperbolic

1) This paper is an English translation of the paper in

“Mathematicae Numericae Sinica,
1978, No. 1, 33—43”,
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gystems with two independent variables. For any explicit and implicit
horizontal-three—point schemes and for several horizontal-multi-point
explicit schemes, in which the Rusanov™® third-order scheme, and the
Burstein-Mirin™ third-order scheme are included (i.e., for almost all
schemes'~%) heing used in practical work), we present sufficient
conditions of stability of schemes with variable coefficients. These are: (i)
the von Neumann condition (4); (ii) condition (5), which guarantees the
difference equations to be well-conditioned, and which is automatically
fulfilled for explicit schemes; (iii) the condition that the coefficients of
the schemes are smooth functions of # and ¢. Conditions (4) and (5) are
algo necessary for schemes with constant coefficients. We do not require
that the schemes be dissipative, nor do we require that the operators be
gymmetric. These conditions can be applied conveniently to both
explicit and implicit schemes.

1. General Results
We consider the following initial-value problem of hyperbolic
gystems:
G+ n 50 (1)
U(z, 0)=Ff (m),
where U(g, t) and f(s) are N-dimensional vectors, and A(w, ¢) is an

N x N-matrix. A(w, t) has N real eigenvalues and N linearly independent
eigenvectors, i.e., there is a matrix G' such that

A=G"14a, (2)

where A(z, ¢) is a real diagonal matrix. We discuss the following
horizontal (H +1)-point difference scheme:

ERh.m<A> rﬁﬂ” 2 Sk.m(A) m+hy (3)
where we adopt the following notation:
=U(md=, kdt);
R}, (4) = By(mda, k4t, da, 4t);
Sk a(4) =8a(mdw, kdt, 4o, 4t);
rom(4) and 8% ,(4) are N x N-matrices.
We also introduce other notation as follows: RE.. S%. denote

hom(4) | so=as=0, 8%, m(4) | so=s=0 Tespectively; F denotes (Fo, Fy, -+, Fg),
where F is an N x N-matrix, k=0, 1, ---, H; F* ig the conjugate

H
transposition of F'; and F(f)= > F,¢™. Moreover, the superscript
h=0

and subscript m will be omitted, if no confusion results. We will discuss
problems in L, space and suppose 4i/ 4z is bounded.
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First, we give a lemma.
Lemma 1 If 2( }i’ Dy, g™ )’ E,( ’;22 D;.,,e"“’) =0, then every sum?® of
all “N —matrixwlement;’ ’ located on a (iiagonal line of Q=g DiE,D, is a

null-matrix, where H; and Dj,; are N x N —matrices, and where the
matrix @ is an N(H+1) x N (H +1)-matrix.
Proof From

Z( é‘}, D, g™ )ﬁ Ez< g Dy, ™ )

" H
=2 2 ? Dj, 1E1D1+h,13‘m=h§3 %S‘ g D;.iE;DHh.te‘M“O;

! h=—H
we obtain
33 D5BDynu=0, h=0, £1, £2, -, +H,

where j satisfies 0<j<H and 0<j+h<H. However, 3\ D%, ,H,D,»,, is
T T

the sum of all “N-matrix-elements” located on “the h-th diagonal line”
of >} D; E;D,. Therefore, we obtain the desired result.
]

Then, we give two theorems.
Theorem 1 1If for any m, k, and 8, the following conditions are
fulfilled:
(i) there exist two invertible matrices N* and G* such that
NoRL(0)G5 = A5,n(6), NESL(9) QL = A5,.(0),
and
AL (0) A%, (8) — 45,,(8) A5, m(8) >0, @
where Af ,(0) and A5 ,.(8) are diagonal matrices, and >0
denotes that the matrix on its left side is nonnegative definite;
(i) AT (0) A%, (0) — 0,1 >0, (5)
where ¢; is a positive constant and I is an N x N—unit matrix;
(iif) Ba, 83, N, N*, G and G~ satisfy the Lipschitz condition with
respect to o and %, i.e., for every element f of these matrices,
the following relations

lf5,+1~f’,‘,,]<0241w, If,’;”— ﬁ,l<02dt

1) Let 4;, be an N X N-matrix. We call

2 Ay gn
0<{3,s+h)<H

the sum of all “N-matrix-elements” located on the h~th diagonal line of

A-OO) AOI) Ty Ao
410, 411, -y A1m

Ago, Am1, -+, Agg
where 0<C{%, ¢+h}<<H denotes the fact] that 0<Ci<<H and 0<Ci+h<<H.
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are fulfilled, and thege elements are bounded;
(iv) among R;, 8, and R, (4), Sx(4), there are the relations
| B(4) — Ry | <oads,
183(4) — 81| <cads;
(v) V(@)ER”(H)N“NR(&) —8"(8)N°NS (0)
=G 41(0)41(6)G— G 43(0) 45(0)G
can be rewritten as
V(6) = DO M), ®)

where M; and D,,; are N x N-matrices, satisfying the Lipschitz
condition, and M, is a nonnegative definite matrix,

then the scheme (3) ig stable in the space Ly, i.e., there exists a constant
6g such that

[U*°<es| U°|?, 0<kdi<Ty,
where 7T'; ig a bounded constant and
|U*|*=3 U* (mdw, kat) U(mds, kdt) 4.
Proof We use the energy method. We take
H & H
=3V 2 BN Ub) (W5 3 B0 U)o
=3\(U, B*N*NRU): 4o+ 0( ) | U¥|?,

as the energy sum, where U/, = (Un, Unsay =+, Upyn).

First, we prove that from conditions (i), (iii)—(v) we can obtain
the inequality

T — <L cydm| U*|?, Q)

where ¢4 i9 2 (onstant. In fact, by using (3) and conditions (i), (@v),
we have

== (W5 3 5. Uh) (W5 85,0050

~(W% B BT ) (W5 3B, ) |0
+0 () | U*|?

=3\, (8*N*NS— R*N*NR) D)k Ao+ 0 (4a) | e[,

According to conditions (iii) and (v) and by using Lemma 1, we know

that every sum of all “N-matrix—elements” located on a “diagonal line”
of the matrix

Q=S"N'NS—R*‘N*NR+3 D:M,D,
]
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is a null-matrix of order N, and that every element of @, satisfies the
Lipschitz condition with respect 50 #. Thus, from the fact that > D; M, D,

i

is nonnegative definite, we can obtain inequality (7) immediately.
Then, from conditions (ii) and (iii), we derive
os| UM |*<T*<e3*| U*|?, ®
where ¢; is a positive constant, It ig easy o obtain the right half of the

inequality. In the following we derive the left half. By using condition
(i) and the Fejér—Reisz theorem™”, we know that there exists a diagonal

matrix—polynomial J (§) = % J1¢™ guch that
h=0
R*(§)N"NR(§) —G"* _g— G
=G"47(0) 4,(0)G—-q* % G=G"J*(0)J (9)q.

Mozeover, because J*(6)J (6) = (¢, /2) I>0, from the fact that the elementy
of 4;(@) satisfy the Lipschitz condition, we can see that the elements of
J(8) also satisfy the Lipschitz condition [, Thus, according to Lemma
1, every sum of all “N-matrix—elements” located on a “diagonal line” of
the matrix

Q.= R'N*NE— @‘*% G—T37,

is a null-matrix of order N, where ,
@=(a,0, -, 0), O being an N X N-null-matrix,
H
:fq= (J()G, J;LG, ey JHG),
In addition,
U, G- g — » 01 — % ___r
(U, & GU)m ( U, &2 GU)”? s1ae (U D
Therefore, from the fact that J. ¢J ¢ is non negative definite, we can derive
the left half of (8) immediately. Obvious] ¥, the inequality
T# — T o do| U 2<*f% La/T™
5

follows from (7) and (8) immediately. Furthermore, we can obtain the
following inequalities:

T"“<<1+ %:_ Ao >T"< (1+ -g:; w )'"“T",

and

HUk+1[i9<cgg<1+_ci sz)kﬂ | ooy,
Cs
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Therefore, when Adz/dt is bounded; there is a positive constant ¢; such
that
U [*<es| )7,

i.e., the conclusion of the theorem is proved.

Definition Let J*= (-, UY, UY, -+, U%, ---)® be the solution of
the system of equations

BU*=C.
If there exists a positive constant such that the inequality
[U*]*<cs] O] .

is fulfilled for any solution I*, then we say that the system is well—
conditioned in L, where [{Cl]2=$[c,|” dz and ¢; is an element of C.

Obviously, if the left half of (8) is fulfilled and IN%| is bounded, then
the difference equations in (3) are well-conditioned. Therefore, we can
obtain the following theorem: '

Theorem 2 If for any m and 6, there are two invertible matrices N
and G such that NR(6)G 1= A,(f) and :

A3(6) 44(8) — e I >0, ®)
and if conditions (iii) and (iv) of Theorem 2 are fulfilled, then the
- difference equations in (3) are well-conditioned. In the case with constant
coefficients, if there exist two invertible matrices N and G such that all
N R,G™* are diagonal matrices, then condition (5) is also necessary.

Proof From the proof of Theorem 1, we know that (8) also is
fulfilled under the conditions of this theorem. Therefore the first part of
the conclusion is proved.

If (B) is not fulfilled, then there exists a number 6° such that the
J-th element of 4;(6) =NR(§)G is equal to zero when § =6°. Therefore,
in the case of constant coefficients, the equations

H H )
N;E)R"U"i'*"': ;NR;,UL,.=O, m=-, 0,1, 2 -
= =0

have a nontrivial solution:

’

0

0
Urin=G™| ™" | ___ the j—th element.
0

°

0
Therefore, the equations are not well conditioned, i.e., the second part
of the theorem is proved.

From Theorem 2, we know bthat the Fourier method can be used for
studying the properties of difference equations. '
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2. Applications

Before we apply the results in Section 1 to some concrete schemes,
we point out the following fact: for quite a few difference schemes which
can be written in the form (3), there exists an invertible matrix & % such
that R}, and 8%, can be rewitten ag

{ R, = [ﬁ g ey Ak = [ﬁG_l(; e;ndG1E,

~ ~ 9
wom=[H 23 by d'1n = [HG™ (365,049 G5, @

where ¢;, 3 and b;,» ave scalars. The C-I-R scheme'®, the Lax socheme™,
the Richtmyer two step scheme™? the Wendroff scheme™® and the
Thomée scheme™, .-, have this feature, and H% =1 or G%. For these
schemes, there are the following results:

Lemma 2 If the coefficients of scheme (8) satisfy (9), then there
exists V such that

R(0)N"NR(9) =6 ;2: dy sin® Lg_)@, (10)

2
where @, and d, are real diagonal mairices (for their concrete eXpresgions
see (14) and (18)). If condition (iii) of Theorem 1 is also fulfilled, then

every element of a, satisfies the Lipschitz condition with respect to zand ¢.
Proof Let N=GH™. From (9), we have

G_I”R*(ﬁ)N”NR(ﬁ)G_1= <}§i ; ¢y nAle™ >” < %2%1./1564”>

h=0

R*(8)N°NR(8)—8"(§) N*NS(6) =G'( io a» sin ﬁ)a, (11)

H o
=3 G,

h=—H

where dy= 3 (; ¢;.id%) (3 ¢5,442.47) .Obviously, dj is a Teal diagonal
J

0<{,4+h)<H
matrix, and dy=d_,. Moreover, for any integer &, there is the expression

k
cos k@ = 2 €y, 4 Sin”’ﬁ—,
=0 2

where any ¢, is a real constant. (For k=1, 2, 8, 4, the concrete
expressions are as follows:

cos/=1—2gin? g,

008 20 =1— 8 gin? —Q-{—Ssin* _0;
2 2°
) (12)

_27;

c0s 46 =1— 32 sin? _g; +160sin® g ~2565in® & + 128 sin® %) :

cos 30 =1—18gin? %—}—48 sin* g —32gin’
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Therefore, we have (10):
“(O)N* (To+2 3 3y c0sh8)@=6" 3 4, sin L)@
R*(§)N°NR(§) =@ (d0+2’§d;.cosh )e- (g)  sin 5)

where

9

~ H e H \2 )
dd=do+22 3k.0dk=(2§01.h/15) , h=1,2,.-H
k=]

»
k=0

(13)
H H

= d, = j N .

=2 Eek'hdk 2 ;;3. O 0<6§k<H <§ o, l%) <§ er,isd)

We can also obtain a similar expression for S*()N°NS(9) in which
H 2
the first term is (2 g b;.;./l’) . Moreover,
h=0

H H
2 2 c’thj= E Z blahAg"
h=0 § h=0 §

Therefore, we obtain the equality (11), and @, has the following
expression:

O<d<f+i<H
— (S bid) (B by )] (14)
Furthermore, it is obvious that every element
condition if condition (ifi)
conclusions of this theorem.

Gk=2§ ern 2 [(;2 ¢y,44%) (;2 65,4424%)

of ay satisfies the Lipschitz
ig fulfilled. Thus, we have obtained all

Lemma 3 Let fo+ fy sin"%-{— Ja sin* "g‘ be a scalar quadratic polyno-

mial in sin? % . Necessary and sufficient conditions for f,+ f1 sin® %”‘"
Jfasin* %>0 are

Jo=0,  2fo+ fi+-2(Fol fot fat fa)) Y20, So+fi+fa=0.

(15)
Proof According to the equality

Jo+ f1 8in? %-i—fg gin* %

= o005t ot o )sin® & oost Lt (it fot st s
= [f 6% cog? % ~ (ot fat f2)*/? sin? ;g.]s

+ [2fo‘|‘f1-|-2.70(1)/2(J"o-i-,)":t-l-f:a)1/2]Sin2 -g- cos? %,
we know that if

Jo=0, 2fo+ f1t 2f82(fot fit f2)Y2>0, and Jo+ fi+fa>0,
then
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Jo+ f18in? %+f2 sin* 'g>0v
i.e., (15) is a sufficient condition. Furthermore, if we lot sin? %- ~0,
cos® 8 ~0 and f32 008" &~ (ot it fo)2sin* £ 20, and observe tho

righi-hand side of the equality, then we can find that (15) is also a
necegsary condition.

From Lemma 2 we know that if the coefficients of a scheme satisfy
equality (9), then conditions (i) and (ii) are reduced to

n=1 2
respectively. Furthermore, because g, and dy are Teal diagonal matriceg,
these inequalities can be reduced to some inequalities on scalar polynomialg

B <o O L <o 6
Slapsin® 2 >0 and >'d, sin? 5 = ¢ 1>0
h=0

in sin? % From Lemma 3 we know that if H is not $00 large, these

conditions are further reduced to some inequalities on the coefficients of
schemes ¢;,; and b;,;, and the eigenvalues A, of 4. In the following, we
shall prove that the other conditions of Theorem 1 guarantee that
condition (v) is fulfilled in a series of cages. Therefore, from Theorem
1, we shall obtain some stability criteria which are convenient in
applications. Moreover, for constant coeflicients, these conditions are
necessary.
Theorem 3 For a horizontal three—point scheme with (9) , if

(1) al>0; a1+ag>0, (16)
(ii) there exists ¢;>0 such that

do‘— 011>0,

2(do—eyd) + @1+2(do— 1) (dg— cod + dy + dy)'/*>0, (17)

do"‘C1I+ d1+ d2> 0,
and if conditions (iii) and (iv) of Theorem 1 are fulfilled, then the
scheme i stable.

Proof According to Lemmas 2 and 3, conditions (i) and (ii) here
guarantee that conditions (i) and (ii) of Theorem 1 are fulfilled.
Therefore, the proof of this theorem ig reduced to proving that condition
(v) of Theorem 1 is fulfilled. In fact, we have the equality

VO =R ONNREO) -8 O)NFS©0) = 3a, sin 9 g

h=1

=G (a1 sin? % cos? -g+ (@1+as)sin* g>G

=[A=e*)@1" 2 [(1-e)&]

(=264 )G BT (1 — 204 oo
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Moreover, condition (iii) guarantees that a; and a, satisfy the Lipschitz
condition with respect to z and ¢, Therefore, condition (v) is fulfilled,
i.e., the scheme is gtable.

These schemes in [8]—[16] are horizontal three-point schemes, and
satisfy equalities (9). Therefore, we can discuss their gtability by using
Theorem 3. We give the following corollaries.

Corollary 1 When the C-I-R gcheme®, the Lax scheme™ and the
Lax—Wendroff second—order scheme™® (or the Richtmyer"*' and Mac-
Cormack™? two—step L~ W scheme) are applied to (1), if

At
&) PIESSE (18)
i.e., for every element A, of 4,
a8
[Aa 7;<1,

(2) A(z,t) and G(z, t) satisfy the Lipschitz condition, i.e., for
every element f of 4 and @,
| Voo, )= (o, O] S|l [ 61, (19)
an
|G |*>¢>0, (20)
where ¢ is a positive constant.
then the schemes are stable.

Corollary 2 When the Wendroff®® and Thomée™* scheme is applied

to (1), if
[A]=>&>0, (21)
and (19) and (20) are fulfilled, then the scheme ig stable.

Corollary 3 When the Keller-Thomée™® scheme and the scheme

U= Tt B e L (U3~ Ut T = U) =0,
which is similar to the Orank-Nicolson®® scheme, are applied to (1), if
(19) and (20) are fulfilled, then the schemes are stable.

In order to prove these corollaries, we only need to prove that (16)
and (17) are fulfilled. This is easy. In fact, from the coefficients c;,» and
b,,» of these schemes, we may easily obtain a4, @y, do, d1 and d; by using
(12), (13), and (14), and prove immediately that (16) and (17) are
fulfilled. We shall not give the proof for all schemes. In the following,
taking the L-W scheme and the scheme similar to the Crank-Nicolson
scheme as examples, we shall explain the procedure of the proof. For the
1~W scheme, we have

§01_0A4=0, 20;,1A’=I, 20;,2A5=0,

1 4t 1/ 4t 2 At 2
- =Y - (=" f—=T [ 27
D bpedl=5 75 A+ 2<Aw A) y Zbdi=1 (Aa; A) :

148, 1[4t )
J—'—-———-._.__-— — | —
Dbad'=—5 4 A+2<Aa; A) :
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According to ( 12),
e,0=1, e5,;= -2,
69,0=1, 63,1=‘—8, Cg,9=8.

Therefore, using (13) and (14), we obtain
d():I, d1=0, dg=0,

a1=0, a2=4[1~— (—f% /1>2J< 4t A)s,

yr
ie., (16) is reduced to (18), and (17) is always fulfilled. Thus, it is

easy to prove that the conditions of Theorem 3 are fulfilled if (18)-—(20)

are fulfilled. This is the desired conclusion. For the scheme similar to the
Orank-Nicolson scheme!%),

1 4 1 4¢
?C;.OA i Iz 4, ;ECJ.J.A I, ;2049211 4 Jz 4,

1 4t 1 4t
- i .
; bhO 4 Az A} ;2 bf,lA I: ? b!iﬁA 4 e A-~
Moreover, by using (13) and (14), we obtain

2 2
do=1, d1=(—2% 4), d9=—<At-A) ,

a1=0, a,=0.
Thus, (18) and (17) are always fulfilled, and it ig easy to obtain the
conclusion we want.
Lemma 4 For a horizontal five~
the order of accuracy of the scheme ig

Proof The horizontal five-point
the following form:

point explicit scheme with 9, if
greater than 2, then g, =0,
explicit scheme can be rewritten in

ﬁ";12+;=so(d) U:+ S1(4) U’;+1+Sa(d) Uf';,+2+S3(A) Uk s+ Sé(d) U,
where j ig equal to any one among —2,

scheme is at least of the second order
relations:

=1, 0, 1, and 2. Because the
accuracy, we have the following

SO+S1+S’+S8+S4=I,
: Vi) .
*280“81+83+2S4= — <Tw A —]I),

480+ Syt Su+ 48, = (2 4 i)'

These expressions can be rewritten ag
17/ 4t .\ /At .
8= (G 4-i1) (G 4~iT)]-85,-5,,
2
8,1 (LL A—j1) +88,+38,,

S,m%[(‘% a=jr)’ —~(-Z‘%A—jl)}-so~3&.

(22)
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In addition, according to (14) and (12), in the case here,
1= —2[ —2(86S3+ 8185+ 8283+ 8s8s) — 8(SoSa+ 8185+ 85584)
—18(8o93+8:8.) —328,8,1, Sp=GS8,G7*.
By using these expressions, it ig easy to prove the conclusion of this

lemma. In fact, putting (22) into the expression for a;, we immediately
know a;=0.

From this lemima and the other results mentioned above, we obtain
the following result:

Theorem 4 When the Rusanov® and the Burstein—Mirin™ third-
order schemes are applied to (1), if (18)—(20) and

4(% %)2 - (x.. ;ji)é <w<3 (23)

are fulfilled, then the schemes are stable. (@ is a parameter of the
Rusanov™ gcheme.)

Proof The schemes are third order, horizontal five—point explicib
schemes, and (9) is fulfilled, so a;=0. Thexefore, according to Lemma 2,

V() =aG"° (a, sin® o s sin® fg—"‘{"‘ag gin® %)G

—@ { oL 112046 2[as | L+ 26+

+ (2a9+as) |1 — 62| 2+ (@ +as+as) | 1 — 26+ 6 |] }G‘~

Mozeover, it can be verified that for the schemes, only when
@:=>0, 2a3+a5>0, Gat+as+a=>0,

oondition (4) can be fulfilled. Therefore, when conditions (i), (iii) and
(iv) of Theorem 1 are fulfilled, condition (v) of Theorem 1 is also
fulfilled, i.e., in order to apply Theorem 1, we only need to prove that
(i)—(iv) are fulfilled. Obviously, if (19) and (20) are fulfilled, then
(iii) and (iv) are fulfilled. For explicit schemes, (ii) is always fulfilled.
Mozreover (18) and (23) guarantee that (i) is fulfilled. Therefore,
Theorem 1 can be applied, i.e., the schemes are stable.

Theorem 5 For a second—order or third—order explicit scheme with
(9) and H=3, if

1) ay=>0, as+a3=>0, (24)
and if conditions (iii) and (iv) of Theorem 1 are fulfilled, then the
scheme is stable.

Proof By using Lemma 4 and the method for proving Theorem 3,
the Tesult can be obtained. The concrete proof is omitted.

8. Conclusions

From the above results, we see that in a series of cases, conditions
(i)—(iv) of Theorem 1 guarantee that condition (v) of Theorem 1 is
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falfilled, i.e., if (i)—(iv) of Theorem 1 are fulfilled, then the schemes
for pure-initial-value problems with variable coefficients are stable.
Moreover, we also see that in a series of cases, if the von Neumann
condition (4), condition (5) guaranteeing that the difference equations
are well conditioned, and condition (iv) are fulfilled, and if G and A are
8mooth functions, then the schemes are stable. Condition (5) is always
fulfilled for explicit schemes. In general, if A4 and @ are smooth, then
condition (iv) is fulfilled. Thus for a series of explicit schemes, if the von
Neumann condition is fulfilled, and if G and 4 are smooth, then the
schemes with variable coefficients are stable; for a series of implicit
schemes, if these two conditions and condition (5) are fulfilled, then the
schemes are also stable. Therefore, for a series of explicit schemes, the
conditions of the papers [2] and [5] can be weakened. In [4], those results
of [2] and [5] have been improved. The paper [4] also has discussed the
stability of implicit schemes. However, the stability criterion in this paper
seems 0 be more convenient. Moreover, this paper gives certain conditions
which do not contain functions of 8, for example, conditions (18), (17
and (24). Therefore the results of this paper are more useful in practical
applications.
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Appendix 2

A Block-Double-Sweep Method for “Encoinplete" Linear
Algebraic Systems and Its Stability?
Abstract

The block-double-sweep methods for linear algebraic systems have
been discussed by many authors. However, sometimes we may meeb a
system which consists of many linear and a few nonlinear equations, and
in which the number of unknowns in the linear equations is greater than
the number of linear equations. In this Situation, these linear equations
constitute an “incomplete” system. This Paper presents a block—double-
sweep method which can be used to solve the “incomplete” systems of
linear equations and which is stable under very weak conditions. In
addition, this paper points out that for linear tridiagonal systems we can
obtain the stability conditions which are weaker than the conditions
obtained previously.

Introduction

Rusanov’s paper [1] discusses a block-double-sweep method—-a

direct method for solving a system in the following form:
b,x4+a4+1a:4+1=c;+1, {I/=O) 1: °% M_'lx (1)
{ 9o%o=d,, @)

hygey =dy,

where b, and a4 aTe n X n-matrices; &; and ¢; are n-dimensional vectors;
go and hy are sXn- and (n—s) X n-matrices respectively; d, and dj are
s— and (n—s)-dimensional vectors respectively; and 0<s<n. We may
meet this type of system when solving differential equations numerically.
In this case, equations (1) are difference equations approximating
differential equations; and every equation of (2) is either a boundary
condition for differential equations or a difference equation. Of course,
this type of system can also appear in other problems. [2] discusses

1) This paper is an English translation of the paper in “Mathematicae Numericae Sinica,
1978, No. 3, 1—27”.




