Syllabus for MATH 6171 Advanced Applied Mathematics I

Text: Advanced Engineering Mathematics, Ninth Edition, by E. Kreyszig

Lecture(s)	Section(s)	Contents	
1	5.1	Power Series Method	
2	5.3	Legendre's Equation	
3	5.4	Frobenius Method	
4	5.5	Bessel's Equation	
5	6.1 - 6.2	Laplace Transform, Differential Equations	
6	6.3 - 6.4	Unit Step Function, Dirac's Delta Function	
7	6.6, 6.8-6.9	Different1ation and Integration of Transforms	
8		Review	
9		Test 1	
10	9.1 - 9.3	Inner Product, Vector Product	
11	9.4	Vector and Scalar functions and Fields	
12	9.7 - 9.8	Gradient of a Scalar Function, Divergence of a Vector Field	
13	9.9, 10.1	Curl of a Vector Field, Line Integrals	
14	10.2	Path Independence of Line Integrals	
15	10.4, 10.6	Green's Theorem, Surface Integrals	
16	10.7, 10.9	Trip Integrals, Theorem of Guass, Stokes's Theorem	
17		Review	
18		Test 2	
19	11.1 - 11.2	Fourier Series	
20	11.3 - 11.4	Even and Odd Functions, Half-Range Expansions	
21	11.7 - 11.9	Fourier Integral and Transform	
22	12.1 - 12.3	Wave Equation, Solution by Separating Variables	
23	12.4 - 12.5	D'Alembert's Solution, Heat Equation	
24	12.6	Solution by Fourier Integrals and Transforms	
25	12.7 - 12.8	Rectangular Membrane, Double Fourier Serirs	
26	12.10	Laplace's Equation in Spherical Coordinates	
27	12.11	Solution by Laplace Transforms	
28		Review	
29		Catch Up	
30		Test 3	

MATH 6171-001 Fall 2006

MW 2:00 p.m. – 3:15 p.m. Cameron Applied Research Center 119

Text: Advanced Engineering Mathematics, by E. Kreyszig (9-th Edition), 2006.

Instructor: Prof. You-lan Zhu Office: 390F Fretwell, Phone: 704-687-4909, E-mail: yzhu@uncc.edu, Web: www.coe.uncc.edu/~yzhu/classes, Office Hours: MW 12:30 p.m.-1:45 p.m. and by appointment.

Homework will be assigned every lecture. There are two types of homework problems, with * and without *. Every Monday students should turn in all the homework problems with * assigned during the previous week for grading. However you also need to do the problems without * because these materials are also required and certainly will appear on the tests. Homework counts 30% of your grade.

There will be three tests but no final exam. No makeup tests will be given without a reasonable, documented excuse. Each of the first two tests counts 20% of your grade and the third test 30%. You should expect that an average of 90% or better will be needed for an A, 89% - 80% for a B. Otherwise a C (79% - 60%) or U (below 60%) will be given.

As with most mathematics classes, the material covered in one class usually depends heavily on the material from previous classes. It is very important that you try to keep up with class assignments. If you have any questions, do not hesitate to ask me.

 $\mathbf{P}.\mathbf{S}$

	Estimated Dates	Percentages	Chapters
Test 1	9/20 or so	20%	5-6
Test 2	10/25 or so	20%	9-10
Test 3	12/6, 11, 2:00-3:15p.m.	30%	11-12