MATH 6171	Test III	Fall 2002
	Name :	
Show the details of	your work !! ID :	

1. (a) Is the function $|x^3|$ odd, even or neither odd nor even?

(b) Is the function $\sin x^3 + x \cos x$ odd, even or neither odd nor even?

- (c) Is the function $xe^x + x \sin x$ odd, even or neither odd nor even?
- (d) What is the smallest positive period of the function $\sin 2x + \cos 4x$?
- (e) What is the smallest positive period of the function $\cos x + \cos \frac{x}{2} + \cos 2x$?

2. (a) Representing the following function by the Fourier cosine series:

$$f(x) = \sin x, \quad 0 < x < \pi.$$

(b) Using the Fourier cosine series you get, show that

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots = \frac{1}{2}.$$

3. Let r, θ , ϕ be the spherical coordinates used in the text. Find the potential in the interior of sphere R = 1, assuming that there are no charges in the interior and the potential on the surface is:

$$f(\phi) = 1 - \cos\phi - 6\cos^2\phi$$

(Hint: The Legendre polynomials of degrees 0, 1, 2 are

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$

and

$$\int_{-1}^{1} P_m^2(x) dx = \frac{2}{2m+1},$$

where $P_m(x)$ is the Legendre polynomial of degree m.)

- 4. (a) Find the solutions of the equation $(y')^2 + 5y' + 4 = 0$ and show that the solutions can be written as x + y = constant and 4x + y = constant.
 - (b) Let v = x + y, z = 4x + y and $U(v, z) = U(v(x, y), z(x, y)) \equiv u(x, y)$. Suppose that u(x, y) satisfies $\frac{\partial^2 u}{\partial x^2} 5\frac{\partial^2 u}{\partial x \partial y} + 4\frac{\partial^2 u}{\partial y^2} = 0$. Show that U(v, z) satisfies $\frac{\partial^2 U}{\partial v \partial z} = 0$.
 - (c) Find the general solution of $\frac{\partial^2 U}{\partial v \partial z} = 0$ and based on the results given in the above part, find the general solution of $\frac{\partial^2 u}{\partial x^2} - 5\frac{\partial^2 u}{\partial x \partial y} + 4\frac{\partial^2 u}{\partial y^2} = 0.$

5. (a) For f(t) = t, solve the following problem by the Laplace transform

$$\frac{\partial v}{\partial x} + x^3 \frac{\partial v}{\partial t} = 6x^3, \quad v(x,0) = 0, \quad v(0,t) = f(t), \quad x \ge 0, \quad t \ge 0.$$

(b) For $f(t) = e^{\sin 2t}$, solve the problem given in (a).

6. Solve the problem

$$\begin{cases} \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}, & 0 \le x \le L, \ t \ge 0, \\ u(0,t) = u_x(L,t) = 0, \ t \ge 0, \\ u(x,0) = f(x), & 0 \le x \le L \end{cases}$$

by the method of separating variables.