

(b) Find Im
$$\frac{1}{z}$$

(c) Find the polar form of $\frac{1-i}{1+i}$

(d) Find $\operatorname{Arg}(1+i)$

(e) Find all roots of $\sqrt[3]{216}$

2. Are the following functions harmonic? If so, find a corresponding conjugate function u(x, y) for each of them so that f(z) = u(x, y) + iv(x, y) is an analytic function.

(a) $v = x^2 - y^2$

(b) $v = \sin x \cosh y$

3. (a) Find and sketch the image of the region: $\ln 3 < x < \ln 5$ under the mapping $w = e^{2z}$.

(b) Find and sketch the image of the region: 1 < y < 2 under the mapping $w = \sin z$.

4. (a) Find the linear fractional transformation that maps -1, 0, 1 onto -1, 0, 3 respectively.

(b) Find a linear fractional transformation that maps $|z| \leq 1$ onto $|w| \leq 1$ such that z = 1/3 is mapped onto w = 0.

(c) Show that substituting any linear fractional transformation into a linear fractional transformation gives another linear fractional transformation.

5. Integrate

(a) $\int_C \cos^2 z dz$, C is the path from i to 1 along the unit circle.

(b) $\int_C z^2 e^{z^3} dz$, C is the path from 2 along the axes to *i*.

(c) Show that $\bar{z} = x - iy$ is not analytic and calculate $\int_C \bar{z} dz$, C is the unit circle, counterclockwise.

6. Integrate the following f(z) around the contour C in the counterclockwise sense.

(a)
$$f(z) = \frac{z^3}{3z-1} + \frac{1+z}{z-3}, \quad C: |z| = 1$$

(b)
$$f(z) = \frac{(z+2)^4 + \cos 2z}{(z+1)^2}, \quad C \text{ is the boundary of square with vertices } \pm \frac{3}{2}, \ \pm \frac{3}{2}i$$

(c)
$$f(z) = \frac{\ln(z-2)}{(2z-1)^3}, \quad C: |z-i| = 2$$