

(b) Find Im
$$\frac{1}{\bar{z}}$$

(c) Find the polar form of
$$\frac{i}{1+i}$$

(d) Find all roots of $\sqrt[4]{-16}$

(e) Show that $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2).$

2. Are the following functions harmonic? If so, find a corresponding conjugate function u(x, y) for each of them so that f(z) = u(x, y) + iv(x, y) is an analytic function.

(a)
$$v = x^3 - 3xy^2$$

(b)
$$v = e^x \cos 3y$$

3. (a) Find and sketch the image of the region: $\pi/4 < {\rm Arg}~{\rm z} < \pi/2$ under the mapping $w=z^2$.

(b) Find and sketch the image of the region: 0 < y < 2 under the mapping $w = e^z$.

4. (a) Find the linear fractional transformation $w = \frac{az+b}{cz+d}$ that maps -1, 0, 1 onto -1, i, 1 respectively and determine what the lower half-plane is mapped onto.

(b) Find a linear fractional transformation that maps $|z| \leq 1$ onto $|w| \leq 1$ such that z = i/3 is mapped onto w = 0. (You need to show that the transformation maps $|z| \leq 1$ onto $|w| \leq 1$.)

(c) Show that substituting any linear fractional transformation into a linear fractional transformation gives another linear fractional transformation.

5. Integrate

(a) $\int_C e^{3z} dz$, C is the path from 2 along the axes to *i*.

(b) $\int_C \text{Im zdz}, C$ is an ellipse: $x^2 + y^2/4 = 1$, counterclockwise.

(c) Show that $\bar{z} = x - iy$ is not analytic and calculate $\int_C \bar{z} dz$, C is the unit circle, counterclockwise.

6. Integrate the following f(z) around the contour C in the counterclockwise sense.

(a)
$$f(z) = \frac{4 - \sin z}{z^2 - 2z} + \frac{z+1}{z+3}, \quad C: |z| = 1$$

(b)
$$f(z) = \frac{1 + \sin z}{(z+1)^2}, \quad C: |z-i| = 2$$

(c)
$$f(z) = \frac{e^z}{4z^2 - 1}$$
, $C: |z| = 1$

(d) Show that $\oint_C (z - z_1)^{-1} (z - z_2)^{-1} dz = 0$ for a simple closed path C enclosing z_1 and z_2 , which are arbitrary.