

(b) Is the series $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ convergent or divergent? (Please give explanations for your answer.)

(c) Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{1}{(1+i)^n} (z-i)^n$;

(d) Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^n} (z+1)^n$.

2. Find the Maclaurin series of the following functions and determine the precise regions of convergence:

(a) $1/(1+z^2)$.

(b)
$$\sin^2 z$$
.

(c)
$$1/(z+i)^2$$
.

(d)
$$\int_0^Z \cos t^2 dt$$
.

3. Find all the Taylor and Laurent series of the function $f(z) = \frac{1}{z+1}$ (assume the center is 1).

4. Evaluate the following integral (counterclockwise)

$$\oint_C \frac{e^z + z}{z^3 - z} dz; \quad C : |z| = 1/2$$

5. Evaluate the following integral

$$\int_0^{2\pi} \frac{1}{2 - \cos\theta} d\theta.$$

6. Evaluate the improper integral

$$\int_{-\infty}^{\infty} \frac{\sin 2x}{x^2 + x + 1} dx$$

7. Find the potential $\Phi(r,\theta)$ in the unit disk r < 1, having the given boundary values $\Phi(1,\theta) = 1 + 2\cos 2\theta + 3\cos^2 2\theta$.

8. Find the electrostatic potential between the two portions of a circular plate $C_1 : |z| = 1$ and $\theta \in (0, \pi/2)$ and (potential $U_1 = 0$ volts) and $C_2 : |z| = 1$ and $\theta \in (\pi/2, 2\pi)$ ($U_2 = 110$ volts).

9. Find the temperature field T in the first quadrant of the z-plane if the temperature at the x-axis and the y-axis is given:

$$T = \begin{cases} 10^{\circ}C, & \text{if } 0 \le x < 1 \text{ and } y = 0, \\ 0, & \text{if } 1 < x \text{ and } y = 0 \end{cases}$$

and

$$T = \begin{cases} 10^{\circ}C, & \text{if } 0 \le y < 2 \text{ and } x = 0, \\ 0, & \text{if } 2 < y \text{ and } x = 0. \end{cases}$$