"Self-Checking Test for Calculus and Linear Algebra”
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Show the details of your work !!

1. (a) Let £ = 7 =T—tand V(S,t) = (S + P,)V(¢,7), where P,

S+ P,
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is a positive constant. Show that in terms of &,V (2)_‘:’ %—‘g, and %T‘Z/, for
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(b) Consider a function V(Z,, Zs, Z3). Let
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where 7, 1, Zs;, and Zs; are constants. These relations also give the relations
Zy = Z1(&1), Za = Z2(§1,82), and Zy = Z3(&1, &2, &3) implicitly. We define

V(&1,82,&3) = V(Z21(&1), Z2(81,&2), Z3(61, €2, §3)) and clearly for V/(Z1, Za, Z3)
we have the following expression:

V(Z1, 22, Z3) = V(E1(21),&(Z1, Zo), &3(Z2, Z3)).
Express
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2. G(S) is defined by
a(S) = 1 e—[ln(S/a)+b2/2]2/2b27
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where a and b are positive numbers. Show that

(a) for any real number n
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where . ;
N(z) = Nz / e e
(Hint: Use the substitution n(S) = W)

3. (a) Show that
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is a solution to
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and —oo < X < oo means
—oco<;<o0, t=1,2,---,n.

(b) Show that the function ¢(xg;x, 7) satisfies the conditions

/ / / (b X0, X, T d.ﬁl]lod.TQ() dwng =1



and
00, at X = Xg,
lim ¢(X07 X, T) -
70 0, otherwise,

that is,
lim ¢(x0; %, 7) = 6(x — Xp).
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4. Suppose that 1 (1) and @5 () are defined for n € [0,1] and n € [1, ), respectively,
and 7 (1) = 2 (1) holds. Assume that

dp1 () 2 (r=Doto2)0° dipz (1/1)

dn dn
and
2 (n) = max(n — $,0), 1<n with §>1L
Find the function ¢; (n) for n € [0,1] if 7 # Do.

5. The function G (S, T; S, t) is defined by

G (S',T;S,t)
1 - [In(S"/8)~(r—Do—c?/2) (T—t)]2/202(T—t) ’
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where r, Dy, and o are constants. Show
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6. As we know, if P is a symmetric matrix and all its eigenvalues are positive, then

we can find a matrix Q satisfying the conditions Q"Q = I and a positive diagonal
matrix A, so that P = QAQ".

(a) Show that we can require det Q = det Q" = 1 without losing generality.
1
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(¢) y and yo are two vectors. Set x = Ry, x¢9 = Ryp, and n =

(b) Set R = A~Y/2Q7. Show det R =

Yo=Y
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7. (a) Sis a random vector and its covariance matrix is B, i.e., the component on
the i-th row and the j-th column of B is equal to E [(S; — E[S;])(S; — E[S5;])],
S; being the i-th component of S. Let S = AS, A being a constant matrix,
and its covariance matrix be C. Find the relation among A, B, and C.

(b) How do we choose A so that C will be a diagonal matrix?



