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Show the details of your work !!
1. (a) Suppose that S satisfies

dS = pSdt + oSdX.
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where F, Dy, r, are a constant. Show

dé1p = (1 — 1+ Dy)&1odt + 0&10d X

and
déo1 = (—p+1r— Do+ o) dt — o€ dX.

(b) Derive the Black-Scholes formula for a European put option, assuming
that we know the solution of the problem
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where @ = Se"=Po)T=) and b = o+/T — t.

2. Assume
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where ¢ is a parameter and U is an unknown function. Find such a function U

that 5 o -
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hold.



3. As we know, the prices of European call and put options are solutions of the
problem
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and the problem
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respectively. Let Si = Fe 7=t Sf = Se=PoT=t ¢, = §*/S* and &, =
Sg/St. Define Vo(&10,t) = ¢(S,t)/Ss and Vi(&p1,t) = p(S,t)/S;. Find the
PDEs and final conditions for Vj(&10,t) and V;(&p1,t) and show that when S
is replaced by S5 and S§ by S} at the same time, the expression for ¢(S,t)
becomes the expression for p(S,t).
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4. The American put option is the solution of the following linear complementarity
problem on a finite domain:

min (g_v — LV, V(£,0) — max(1 — 25,0)) =0, 0<£<1,0<T,
T

7(570) = max(l - 2670)7 0 S f S 1,
where
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Show that if r > 0, then there is a free boundary at 7 = 0 and find the location
of the free boundary at 7 = 0.

5. Suppose that V(S,t) is the solution of the following PDE:
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Find the relation between V(S,¢) and V(S,t; ), and describe the financial
meaning of this relation.

6. Suppose that S is the price of a dividend-paying stock and satisfies
dS = u(S,t)Sdt + 0SdX;, 0<S5 < oo,

where dX, is a Wiener process and ¢ is another random variable. Let the
dividend paid during the time period [t,t + dt] be D(S,t)dt. Assume that for
o, the stochastic equation

do = p(o,t)dt +q(o,t)dX>, o01<0 <0y,

holds. Here d.X5 is another Wiener process correlated with d X7, and the correla-
tion coefficient between them is pdt. For options on such a stock, derive directly
the PDE that contains only the unknown market price of volatility risk. Here
“Directly” means “without using the general PDE for derivatives. (Hint: Take
a portfolio in the form IT = A V) + AsVo + S, where Vi and V, are two different
options.)




