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Show the details of your work !!

1. Suppose V (S, t) is the solution of the problem







∂V

∂t
+

1

2
σ2(S)S2∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0 , 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S.

Let ξ =
S

S + Pm

, τ = T − t and V (S, t) = (S + Pm)V (ξ, τ), where Pm

is a positive constant. Show that V (ξ, τ) is the solution of the problem































∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ

−[r(1− ξ) +D0ξ]V , 0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) =
(1− ξ)

Pm

VT

(

Pmξ

1− ξ

)

,

where σ̄(ξ) = σ

(

Pmξ

1− ξ

)

.

2. (a) Suppose that S is a random variable which is defined on [0,∞)
and whose probability density function is

G(S) =
1√
2πbS

e−[ln(S/a)+b2/2]
2

/2b2 ,

a and b being positive numbers. Show that for any real number n

∫

∞

c

SnG(S)dS = ane(n
2
−n)b2/2N

(

− ln(c/a) + b2/2

b
+ nb

)

;

where

N(z) =
1√
2π

∫ z

−∞

e−ξ2/2dξ.



(b) Consider the problem



















∂Bc

∂t
+

1

2
σ2S2∂

2Bc

∂S2
+ (r −D0)S

∂Bc

∂S
− rBc = 0,

0 ≤ S, 0 ≤ t ≤ T,

Bc(S, T ) = max(Z, nS), 0 ≤ S,

where σ, r,D0, Z, and n are constants. Show that if D0 ≤ 0, then

Bc(S, t) ≥ max
(

Ze−r(T−t), nS
)

for 0 ≤ t ≤ T.

3. As we know, when the LC problem of an American call option is formu-
lated as a free-boundary problem, on the free boundary S = Sf (t) ≥
max(E, rE/D0), we need to require C (Sf (t), t) = max (Sf (t)− E, 0) =

Sf (t)−E and
∂C (Sf (t), t)

∂S
= 1, where C (S, t) and max (S − E, 0) are

the solution of the free-boundary problem and the constraint. Show

that if C(S, t) ≥ 0 and
∂C2 (S, t)

∂S2
≥ 0 for S < Sf (t), then the solution

of the free-bounary problem satisfies the LC condition

min

(

−∂C

∂t
− LSC, C −max(S − E, 0)

)

= 0,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r.

2



MATH 6202/8202 Test I (Part 2) Spring 2010

Name :

ID :

Show the details of your work !!

4. Suppose that S1, S2, · · ·, Sn are n lognormal random variables satisfying
the following stochastic differential equations:

dSi = µiSidt+ σiSidXi, i = 1, 2, · · · , n,

where µi, σi, i = 1, 2, · · · , n, are constants and dXi, i = 1, 2, · · · , n, are
n Wiener processes, i.e., dXi = φi

√
dt, φi being distinct standardized

normal random variables, i = 1, 2, · · · , n. φi and φj could be correlated
and

E[φiφj] = ρij , i, j = 1, 2, · · · , n,
where −1 ≤ ρij ≤ 1. Define

ξij =
Si

Sj

, i 6= j.

(a) Show that ξij satisfies the following stochastic differential equation

dξij = (µi − µj + σ2
j − ρijσiσj)ξijdt+ σijξijdXij ,

where

σij =
√

σ2
i − 2ρijσiσj + σ2

j

and dXij is a Wiener process defined by

dXij =
σidXi − σjdXj

σij

.

That is, ξij = Si/Sj is also a lognormal variable and its volatility
is σij .

(b) Define

ρijk =
ρijσiσj − ρikσiσk − ρjkσjσk + σ2

k

σikσjk

.

3



Show
E[dXikdXjk] = ρijkdt,

i.e., ρijk is the correlation coefficient between the Wiener processes
related to ξik and ξjk.

5. (a) The price of a one-factor convertible bond paying no coupon is
the solution of the following linear complementarity problem











min

(

−∂V

∂t
− LSV, V (S, t)− nS

)

= 0, 0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = max(Z, nS) ≥ nS, 0 ≤ S,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

and n, Z, σ, r, and D0 are positive constants. Show

V (S, t∗)− Ze−r(T−t∗) ≥ V (S, t∗∗)− Ze−r(T−t∗∗) if t∗ ≤ t∗∗.

(b) Can you prove that V (S, t∗) ≥ V (S, t∗∗) for t∗ ≤ t∗∗ by using the
method used in a)? If your answer is “Yes”, give a proof; otherwise
explain why you cannot.

6. Consider a two-factor convertible bond paying coupons with a rate
k. For such a convertible bond, derive directly the partial differential
equation that contains only the unknown market price of risk for the
spot interest rate. “Directly” means “without using the general PDE
for derivatives”. (Hint: Take a portfolio in the form Π = ∆1V1+∆2V2+
S, where V1 and V2 are two different convertible bonds.)
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