MATH 6202/8202 Test II (Part A) Spring 2010
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ID :

Show the details of your work !!

1. (6 points) Consider the following problem
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V(S,I,T) = max(£(aS —I),0), 0<S, 0<I

1 V
Let n = g and W = g In this case W = W(n,t)

. Derive the PDE and the final
condition for W (n,t).

2. (7 points) Consider the following problem:
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where ¢ (1) and ¢5 () are continuous functions, and ¢; (1) = 2 (1) may not hold
Show that if
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then =0.
3. (7 points) Suppose that V(Si, Ss,t) satisfies
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and V; (€21, &01,t) = W. Derive the final-value problem for V; (€1, &01,t) and



write the problem in such a form that only the volatilities of 51, £y and the correlation
coefficient between the Wiener processes associated with the lognormal variables &5
and &y appear in the PDE.
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4. (6 points) Describe a way to determine the market price of risk for the spot interest
rate.

5. (6 points) Assume that Z;, Zy, Z3 are random variables and satisfy the system of
stochastic differential equations:

dZ; = pi (21, Zsy, Zs, t) dt + 0, (Z1, Zo, Z3,t) dX;, i=1,2,3,

where dX; are the Wiener processes and E [dX;dX;] = p; ;dt with —1 < p,; < 1. In
order to guarantee that if a point is in a domain €2 at time ¢*, then the point is still
in the domain 2 at ¢ = t* + dt for a positive dt, it is necessary to require that the

condition
n1d21 + ngng + ngdZ?, S 0

holds at any point on the boundary of the domain €2, where n;, no, and ng are the
three components of the outer normal vector of the boundary at the point. Suppose
that the domain Qis {Z1;, < Zy <1, Zy; < Zy < Zy, Z3; < Z3 < Zy}. Show that
on the surfaces Z; = 1, Zy = Zy,, and Z3 = Z,, the condition is equivalent to {p; <0,
o1 =0}, {2 >0, 00 =0}, and {—p2 + 3 <0, 03 = 03, pa3 = 1}, respectively.

6. The price of a convertible bond is the solution of the following linear complementarity
problem on the domain [0, 00) X [r;,r,] x [0,T] in the {S,r,t}-space:

ot
B.(S,r,T) = max(Z,nS) > nS,

0B,
min (— —Ls.B.—kZ, B.S,rt)— nS) =0,

where
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(a) (6 points) Assuming that Dy > 0 and there is only one free boundary, find the
formulation of the corresponding free-boundary problem.

O0B.(S,r,t)

(b) (2 points) Does ar

you give? Why?

= 0 hold on the free boundary in the formulation




