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1. (a) (3.5 points) Let pmax(S1, S2, t), cmax(S1, S2, t), and c̄max(S1, S2, t) be the prices of
the three European options with payoff functions

max(E −max(S1, S2), 0), max(max(S1, S2)− E, 0) and max(S1, S2),

respectively. Show

pmax(S1, S2, t) = Ee−r(T−t) − c̄max(S1, S2, t) + cmax(S1, S2, t).

(b) (3.5 points) Let P be a positive definite matrix. As we know, in this case there
exist a matrix Q and a diagonal matrix Λ such that P = QΛQT , where all
the components of Λ are positive and Q satisfies the conditions QQT = I and
detQ > 0. Let y and y0 be two vectors and define R = Λ−1/2QT , x = Ry,

x0 = Ry0, and η =
y0 − y√

2τ
. Show

det R =
1√

det P
and

(x0 − x)T (x0 − x)

4τ
=
ηTP−1η

2
.

2. Let V (S,A, t) be the price of a European Asian option with continuous arithmetic
averaging, where A is the average of the price during the time period [0, t]. As we
know, the equation for European Asian option with continuous arithmetic averaging is

∂W (η, t)

∂t
+ La,tW (η, t) = 0,

where W = V (S,A, t)/S, η = A/S and La,t is the time-dependent operator related to
Asian options and given by

La,t =
1

2
σ2η2

∂2

∂η2
+

[
(D0 − r)η +

1− η
t

]
∂

∂η
−D0.

(a) (2 points) Write down the LC problem for an American Asian put option with
a continuous arithmetic average strike price.

(b) (2 points) Determine where the PDE can always be used and a free boundary
cannot appear and where a free boundary may appear.

(c) (2 points) Derive the free-boundary problem for this case. (Assume that there
exists at most one free boundary.)



3. (7 points) Suppose that V (S1, S2, t) satisfies

∂V

∂t
+

1

2
σ2
1S

2
1

∂2V

∂S2
1

+ ρ12σ1σ2S1S2
∂2V

∂S1∂S2

+
1

2
σ2
2S

2
2

∂2V

∂S2
2

+(r −D01)S1
∂V

∂S1

+ (r −D02)S2
∂V

∂S2

− rV = 0,

0 ≤ S1, 0 ≤ S2, 0 ≤ t ≤ T,

V (S1, S2, T ) = max(S0, S1, S2), 0 ≤ S1, 0 ≤ S2.

Define S∗
0 = S0e

−r(T−t), S∗
i = Sie

−D0i(T−t), i = 1, 2. Let

ξ02 = S∗
0/S

∗
2 = S0e

−(r−D02)(T−t)/S2,

ξ12 = S∗
1/S

∗
2 = S1e

−(D01−D02)(T−t)/S2,

V2(ξ02, ξ12, t) = V (S1, S2, t)/S
∗
2 = V (S1, S2, t)/(S2e

−D02(T−t)).

Show that V2(ξ02, ξ12, t) is the solution of the following problem:

∂V2
∂t

+
1

2
σ2
02ξ

2
02

∂2V2
∂ξ202

+ ρ012σ02σ12ξ02ξ12
∂2V2

∂ξ02∂ξ12

+
1

2
σ2
12ξ

2
12

∂2V2
∂ξ212

= 0, 0 ≤ ξ02, 0 ≤ ξ12, 0 ≤ t ≤ T,

V2(ξ02, ξ12, T ) = max(1, ξ02, ξ12), 0 ≤ ξ02, 0 ≤ ξ12,

where

σ02 = σ2,

σ12 =
√
σ2
1 − 2ρ12σ1σ2 + σ2

2,

and

ρ012 =
σ2 − ρ12σ1

σ12
.
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4. (6 points) Suppose that any European-style interest rate derivative satisfies the equa-
tion:

∂V

∂t
+

1

2
w2∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV + f(t) = 0, rl ≤ r ≤ ru,

where all the coefficients in the equation are known. The value of N -year swap at time
T is given by

Vs(T ; rs) = Q

[
1− Z(T ;T +N)− rs

2

2N∑
k=1

Z(T ;T + k/2)

]
,

where Q is the notional principal, rs is the N -year swap rate and Z(T ;T + k/2) is
the value of zero-coupon bond with maturity k/2 at time T . Describe how to find
the price of a swaption with exercise swap rate rse and maturity T , including to find

Z(T ;T + N) and
2N∑
k=1

Z(T ;T + k/2), by solving this equation from T + N to T twice

and from T to 0 once.

5. (7 points) Consider the problem of the system of ordinary differential equations
dA

dt
= µB,

dB

dt
=

1

2
αB2 + γB − 1

with the conditions
A(T, T ) = 0

and
B(T, T ) = 0.

Find the solution of the above problem of ordinary differential equations by solving
the two ODEs, and show that your expressions of A and B can be rewritten as

A = ln

(
2ψe(γ+ψ)(T−t)/2

(γ + ψ)eψ(T−t) − (γ − ψ)

)2µ/α

,

B =
2(eψ(T−t) − 1)

(γ + ψ)eψ(T−t) − (γ − ψ)

with ψ =
√
γ2 + 2α
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if your solution is not in this form. (This problem is related to the Cox–Ingersoll–Ross
interest rate model.)

6. (a) (5.0 points) Suppose that there is a domain Ω on the (Z1, Z2)-plane, the boundary
of Ω is Γ, and (n1, n2)

T is the outer normal vector of the boundary Γ. Assume
that Z1 and Z2 are two stochastic processes and satisfy the system of stochastic
differential equations:

dZi = µi(Z1, Z2, t)dt+ σi(Z1, Z2, t)dXi with σi ≥ 0, i = 1, 2,

where dXi, i = 1, 2, are the Wiener processes and E [dX1dX2] = ρ12dt with ρ12 ∈
[−1, 1]. Suppose that at t = 0, (Z1, Z2) ∈ Ω. Show that in order to guarantee
(Z1, Z2) ∈ Ω for any time t ∈ [0, T ], we need to require, for any t ∈ [0, T ] and for
any point on Γ, the following condition to be held:

i. if n1 6= 0 and n2 = 0, then {
n1µ1 ≤ 0,

σ1 = 0;

ii. if n1 = 0 and n2 6= 0, then {
n2µ2 ≤ 0,

σ2 = 0;

iii. if n1 6= 0 and n2 6= 0, then{
n1µ1 + n2µ2 ≤ 0,

n1σ1 − sign(n1n2)n2σ2 = 0, and ρ12 = −sign(n1n2),

where

sign(n1n2) =

{
1, if n1n2 > 0,

−1, if n1n2 < 0.

If a point is a corner point, then there are two normals and we need to require
this condition to be held for the two outer normal vectors.

(b) (2.0 points) Suppose that the domain Ω is Z1l ≤ Z1 ≤ 1 and Z2l ≤ Z2 ≤ Z1,
where Z1l and Z2l are constants, and Z1l ≥ Z2l. Find the concrete condition for
each segment of the boundary according to the condition given in a).
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