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Vso(r, t) − max (Vs(r, t; rse, t), 0) ≥ 0,

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0) ,

(8.17)

where t ∈ [0, T ] and r ∈ [rl, ru]. Because Vs(r, t; rse, t) are not given functions,
we have to solve (4.60) and (4.61) with T = t from t + N to t when Vso(r, t)
for time t needs to be determined. Of course, this problem can also be for-
mulated as a free-boundary problem. The reader is asked to write down the
free-boundary problem for this case as an exercise.

Table 8.6. Prices of European and American swaptions with Q = 100

(For each N , take the value of computed rs given in Table 8.5
as rse of the options on the swap)

T\N 2 3 5 10

0.5 0.167 0.196 0.269 0.278
European 1 0.276 0.288 0.499 0.490

2 0.492 0.548 1.083 1.021

0.5 0.213 0.248 0.331 0.342
American 1 0.450 0.474 0.731 0.722

2 0.678 0.753 1.338 1.273

The problems (4.62) and (8.17) can be solved by the scheme (5.37) or
modified (5.31). In Table 8.6, we list some numerical results on European
and American swaptions. The exercise swap rates rse are 0.05335, 0.05423,
0.05506, 0.05712 for N = 2, 3, 5, 10, respectively. The other parameters are
given in the table.

8.3 Pricing Derivatives with Multi-Factor Models

8.3.1 Determining Models from the Market Data

In Section 4.6, a three-factor interest rate model was proposed. In this section,
we will discuss implicit finite-difference methods for the three-factor interest
rate derivative problems and some other related problems. In order to use that
model to price an interest rate derivative, we need to know how to find the
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payoff of the derivative and to determine those coefficients in the partial differ-
ential equation (4.82). In this subsection, we will discuss these two problems,
and the next subsection is devoted to implicit finite-difference methods.

Suppose we want to price a half-year option on five-year swaps with an
exercise swap rate rse. Assume the day we want to price the swaption (the
option on swaps) to be denoted as t = 0. Thus, according to the notation
given in Subsection 4.5.2, T = 0.5 and N = 5.

First, let us discuss how to determine the final value. On the market, the
prices of 3-month, 6-month, 1-year, 2-year, 3-year and 5-year zero-coupon
bonds are given every day. Set T ∗

1
= 0.25, T ∗

2
= 0.5, T ∗

3
= 1, T ∗

4
= 2, T ∗

5
= 3,

and T ∗

6
= 5, let Zi denote the price of the bond with maturity T ∗

i , and define
Si = Zi/T ∗

i , i = 1, 2, · · · , 6. Suppose we have these values on a period of L
days and let Si,l stand for the value of Si at the l-th day, l = 1, 2, · · · , L. By b2

i

and bibjρi,j , we denote the variance of Si and the covariance between Si and
Sj , respectively. From statistics, we know that b2
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Using the data for the period from January 4, 1982, to February 15, 2002, we
obtain

B =
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= 10−3
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0.4644 0.4758 0.4637 0.4224 0.3776 0.2993
0.4758 0.4916 0.4818 0.4413 0.3956 0.3145
0.4637 0.4818 0.4760 0.4392 0.3952 0.3161
0.4224 0.4413 0.4392 0.4109 0.3724 0.3014
0.3776 0.3956 0.3952 0.3724 0.3392 0.2766
0.2993 0.3145 0.3161 0.3014 0.2766 0.2289
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.

By the QR method given in Subsection 5.2.4 or other methods, we can
find the eigenvalues and the unit eigenvectors of B. As soon as we have them,
B can be rewritten as

B = ATCA,

where
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and

C = 10−3 × diag (2.366, 0.04109, 0.003240,

3.953 × 10−4, 1.996 × 10−4, 4.498 × 10−5).

Because the last three components of C are very small compared with the first
three components, the six random variables, S1, S2, · · ·, S6, almost depend
on only three variables. Because
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≈ −0.3822 6= 0,

we can choose S1, S4, and S6 as the three independent components, which
will be denoted by Si1 , Si2 , and Si3 in what follows. From Subsection 4.6.2, we
know that the values of Si, i 6= i1, i2, and i3, are uniquely determined by (4.67)
for a given set of Si1 , Si2 , and Si3 when A is found and S∗

i , i = 1, 2, · · · , 6,
are specified. 4 Based on the six values of S1, S2, · · ·, S6, a zero-coupon bond

4In this way, for any day in the period from January 4, 1982, to February 15,
2002, we can obtain the theoretical values of S2, S3, and S5 by giving the market
data of S1, S4, and S6. That is, from the market prices of 3-month, 2-year, and
5-year zero-coupon bonds we can obtain the theoretical prices of 6-month, 1-year,
and 3-year zero-coupon bonds for any day. In Fig. 8.7 we compare the theoretical
prices of 6-month, 1-year, and 3-year zero-coupon bonds with their market data for
any day in the period from January 4, 1982, to February 15, 2002. The figure shows
that the theoretical prices and the market data are very close to each other.



8.3 Pricing Derivatives with Multi-Factor Models 547

curve with a maximum maturity T ∗

max
= 5 can be found by using the cubic

spline interpolation. Assume that for the period t ∈ [0, T ] = [0, 0.5], S∗

i are
constants, for example, are equal to the values of zero-coupon bonds at t = 0.
Thus, the possible zero-coupon bond curves for any t ∈ [0, T ] are the same,
i.e.,

Z̄ (T ∗;Zi1 , Zi2 , Zi3 , t) = Z̄ (T ∗;Zi1 , Zi2 , Zi3 , 0) .

Here in order to indicate the dependence of the zero-coupon bond curves on
Zi1 , Zi2 , Zi3 , instead of Z̄ (T ∗; t), we use Z̄ (T ∗;Zi1 , Zi2 , Zi3 , t) . As soon as we
have a zero-coupon bond curve, using (4.54) with rs = rse:

Q

[

1 −
rse

2

2N
∑

k=1

Z (T ;T + k/2) − Z (T ;T + N)

]

,

we can determine the value of a swap with an exercise rate rse. Here, Q
is the notional principal and Z(T ;T + k/2) = Z̄(k/2;Zi1 , Zi2 , Zi3 , T ) =
Z̄(k/2;Zi1 , Zi2 , Zi3 , 0). Therefore, the final value of a swaption is

Qmax

(

1 −
rse

2

2N
∑

k=1

Z̄ (k/2;Zi1 , Zi2 , Zi3 , 0) − Z̄ (N ;Zi1 , Zi2 , Zi3 , 0) , 0

)

.

(8.18)
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Fig. 8.7. Comparison between the market data and the theoretical values of zero-
coupon bonds

Before discussing how to determine the coefficients in the partial differen-
tial equation, we would like to give some information about how these zero-
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coupon bond curves generated above are close to the real zero-coupon bond
curves. Suppose that one day, the prices of zero-coupon bonds are

{

Z1 = 0.9811, Z2 = 0.9559, Z3 = 0.9047,

Z4 = 0.7979, Z5 = 0.7068 and Z6 = 0.5475,
(8.19)

which correspond to the following interest rates:

{

r1 = 0.0776, r2 = 0.0923, r3 = 0.1027,

r4 = 0.1161, r5 = 0.1191 and r6 = 0.1242.

Here, ri is associated with Zi by the following expression:

Zi = (1 + ri/2)
−2Ni ,

where Ni is the maturity of the i-th zero-coupon bond. From this set of data,
we can determine a class of zero-coupon bond curves with Zi1 , Zi2 , Zi3 as
parameters. For any day in the period from January 4, 1982, to February 15,
2002, we take the values of Zi1 , Zi2 , Zi3 as input and find a zero-coupon bond
curve from the class. From the zero-coupon bond curve, we obtain the values of
Zi, i 6= i1, i2, and i3, and the differences between the values determined from
the curve and the values from the original market data. We do this for every
day. The average value of the differences divided by (1 − Zi), i 6= i1, i2, and
i3, is 0.005. The same thing to the swap rate and to the value of the swaption
on a 5-year swap with rse = 0.1225 is also done. The maximum difference
between the swap rates from the market curve and the model curve is 0.0004
(4 basis points), and the average difference is 0.00008 (0.8 basis points). The
average error of the swaption value is 0.02 if the notional principal is 100.
Therefore, we may conclude that these zero-coupon bond curves reflect the
market situation.

Now let us discuss how to determine the coefficients in the partial differen-
tial equation. Suppose that derivative securities depend on Zi1 , Zi2 , Zi3 , and
t. Let
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Zi1 − Zi1,l

1 − Zi1,l

,
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Zi2 − Zi2,l

Zi1 − Zi2,l

,

ξ3 =
Zi3 − Zi3,l

Zi2 − Zi3,l

,

(8.20)

where Zi1,l, Zi2,l, and Zi3,l are minimums of Zi1 , Zi2 , Zi3 and we set Zi1,l =
0.9597, Zi2,l = 0.7209, and Zi3,l = 0.4332, which are a little less than the
observed minimums 0.9634, 0.7463, and 0.4847, respectively. From Subsection
4.6.3, we know that the value of a derivative security, V (ξ1, ξ2, ξ3, t), sat-
isfies (4.82), where coefficients depends on r, σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, ρ̃2,3 besides
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ξ1, ξ2, and ξ3. Therefore, in order to use that equation, we have to know
r, σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, and ρ̃2,3. It is clear that r can be determined by the
slope of zero-coupon bond curves at the left end, i.e.,

r (ξ1, ξ2, ξ3, t) = −
∂Z̄

∂T ∗
(0;Zi1 , Zi2 , Zi3 , 0) , (8.21)

where

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Zi1 = Zi1,l + ξ1 (1 − Zi1,l) ,

Zi2 = Zi2,l + ξ2 [Zi1,l + ξ1 (1 − Zi1,l) − Zi2,l] ,

Zi3 = Zi3,l + ξ3 {Zi2,l + ξ2 [Zi1,l + ξ1 (1 − Zi1,l) − Zi2,l] − Zi3,l} .

(8.22)

As we know, for σ̃1, σ̃2, σ̃3 we need to require (4.84):
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σ̃1 (0, ξ2, ξ3, t) = σ̃1 (1, ξ2, ξ3, t) = 0,

σ̃2 (ξ1, 0, ξ3, t) = σ̃2 (ξ1, 1, ξ3, t) = 0,

σ̃3 (ξ1, ξ2, 0, t) = σ̃3 (ξ1, ξ2, 1, t) = 0.

Let us assume σ̃i to be in the form

σ̃i (ξ1, ξ2, ξ3, t) = σ̃i (ξi) = σ̃i,0

1 − (1 − 2ξi)
2

1 − pi (1 − 2ξi)
2
, i = 1, 2, 3, (8.23)

where σ̃i,0 and pi are positive constants, and pi ∈ (0, 1). It is clear that in
this case, condition (4.84) is fulfilled. On each day, we have the values of
Zi1 , Zi2 , Zi3 . Because ξ1, ξ2, ξ3 are defined by (8.20), we can also have the
values of ξ1, ξ2, ξ3 every day. Therefore, we can find σ̃i (ξi) from the data on
the market using the method described in Subsection 5.6.2 with

g (ξi) =
1 − (1 − 2ξi)

2

1 − pi (1 − 2ξi)
2

and N = 0.

For ρ̃1,2, ρ̃1,3, and ρ̃2,3, there is no requirement. We assume that they are
constant and that the value can also be obtained using the method described
in Subsection 5.6.2.

Taking p1 = p2 = p3 = 0.8 and using the data on the market for the period
between January 4, 1982, and February 15, 2002, we obtain

σ̃1,0 = 0.09733, σ̃2,0 = 0.08622, σ̃3,0 = 0.08148

and
ρ̃1,2 = 0.5682, ρ̃1,3 = 0.4996, ρ̃2,3 = 0.8585.


