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Show all the details of your work !!

1. Consider the following free-boundary problem related to one-factor con-
vertible bonds:
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∂S
− rBc + kZ = 0,

0 ≤ S ≤ Sf (t), 0 ≤ t ≤ T,

Bc(S, T ) = max(Z, nS), 0 ≤ S ≤ Sf (T ),

Bc (Sf (t), t) = nSf (t), 0 ≤ t ≤ T,

∂Bc

∂S
(Sf (t), t) = n, 0 ≤ t ≤ T,
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,
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)

.

Convert this problem into a problem whose solution has a continuous
derivative everywhere, and which is defined on [0, 1]× [0, T ] and has an
initial condition.

2. Consider the nonlinear system consisting of the following equations
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m = 0, 1, 2, · · · ,M − 1,
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where un
m are known, τn+1 is given, k0, k1, and k2 are constants, and

g(s, τ) and h(s, τ) are given functions. Discuss how to solve this system.

3. Suppose that the equation

a(ξi)λ
2 + b(ξi)λ+ c(ξi) = 0

has two real distinct roots λ1,i and λ2,i. Define ϕ(ξ) and ϕ(ξ) as follows:

ϕ(ξ) = eλ1,i(ξ−ξi), ψ(ξ) = eλ2,i(ξ−ξi).

Let ξi−1 < ξi < ξi+1 and Wi−1, Wi, Wi+1 be the values of W (ξ) at
ξ = ξi−1, ξi, ξi+1. Assume that on [ξi−1, ξi+1],

W (ξ) = αiϕ(ξ) + βiψ(ξ) + γi.

It is clear that the constants αi, βi, γi, and

a(ξi)
d2W (ξi)

dξ2
+ b(ξi)

dW (ξi)

dξ
+ c(ξi)W (ξi)

can be expressed in the form of linear combination of Wi−1, Wi and
Wi+1. Find such concrete expressions for them.
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This operator is called the conjugate operator of Lr.

(b) Suppose
∂V

∂t
= −LrV,

∂U

∂t
= L∗

rU,

f1(rl, t) = f1(ru, t) = 0, f2(rl, t) < 0, f2(ru, t) > 0
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and
U(rl, t) = U(ru, t) = 0.

Show
∫ ru

rl

U(r, t)V (r, t)dr = constant.

(c) Let U(r, 0) = δ(r − r∗) and V (r, T ∗) = 1. Prove that there is the
following relation:

V (r∗, 0) =

∫ ru

rl

U(r, T ∗)dr.

5. Consider the following problem:
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w(rl) = w(ru) = 0, u(rl) > 0, and u(ru) < 0. Here λ(t) is a unknown
function. We want to find such a function λ(t) that

∫ ru

rl

U(r, t)dr = f(t) for any t ∈ [0, T ∗

max],

where f(t) is a given function. Design a second-order implicit finite-
difference method for such a purpose.

6. How is the final value of a half-year option on 5-year bonds determined
if a one-factor interest rate model is used and if the three-factor interest
rate model is used. (For three-factor model, the independent variables,
besides t, are the values of three-month, 2-year, and 5-year zero-coupon
bonds.)
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